Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia

Abstract

The synthesis of transition metal–dinitrogen complexes and the stoichiometric transformation of their coordinated dinitrogen into ammonia and hydrazine have been the subject of considerable research, with a view to achieving nitrogen fixation under ambient conditions. Since a single example in 2003, no examples have been reported of the catalytic conversion of dinitrogen into ammonia under ambient conditions. The dimolybdenum–dinitrogen complex bearing PNP pincer ligands was found to work as an effective catalyst for the formation of ammonia from dinitrogen, with 23 equiv. of ammonia being produced with the catalyst (12 equiv. of ammonia are produced based on the molybdenum atom of the catalyst). This is another successful example of the catalytic and direct conversion of dinitrogen into ammonia under ambient reaction conditions. We believe that the results described in this Article provide valuable information with which to develop a more effective nitrogen-fixation system under mild reaction conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation and molecular structure of dinitrogen-bridged dimolybdenum complex 2a.
Figure 2: Catalytic conversion of dinitrogen into ammonia in the presence of 2a as a catalyst.
Figure 3: Reaction pathway for catalytic conversion of dinitrogen into ammonia in the presence of 2a as catalyst.

Similar content being viewed by others

References

  1. Ertl, G. In Catalytic Ammonia Synthesis (ed. Jennings, J. R.) (Plenum Press, 1991) and references therein.

    Google Scholar 

  2. Appl, M. Ammonia (Wiley-VCH, 1999) and references therein.

    Book  Google Scholar 

  3. Einsle, O. et al. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297, 1696–1700 (2002).

    Article  CAS  Google Scholar 

  4. Dos Santos, P. C. et al. Substrate interactions with the nitrogenase active site. Acc. Chem. Res. 38, 208–214 (2005).

    Article  CAS  Google Scholar 

  5. Dance, I. Elucidating the coordination chemistry and mechanism of biological nitrogen fixation. Chem. Asian J. 2, 936–946 (2007).

    Article  CAS  Google Scholar 

  6. Kästner, J. & Blöchl, P. E. Ammonia production at the FeMo cofactor of nitrogenase: results from density functional theory. J. Am. Chem. Soc. 129, 2998–3006 (2007).

    Article  Google Scholar 

  7. MacKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderland. Chem. Rev. 104, 385–401 (2004).

    Article  CAS  Google Scholar 

  8. Gambarotta, S. & Scott, J. Multimetallic cooperative activation of N2 . Angew. Chem. Int. Ed. 43, 5298–5308 (2004).

    Article  CAS  Google Scholar 

  9. Hidai, M. & Mizobe, Y. Research inspired by the chemistry of nitrogenase—novel metal complexes and their reactivity toward dinitrogen, nitriles, and alkynes. Can. J. Chem. 83, 358–374 (2005).

    Article  CAS  Google Scholar 

  10. Himmel, H.-J. & Reiher, M. Intrinsic dinitrogen activation at bare metal atoms. Angew. Chem. Int. Ed. 45, 6264–6288 (2006).

    Article  CAS  Google Scholar 

  11. Chirik, P. J. Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Trans. 16–25 (2007).

  12. Fryzuk, M. D. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res. 42, 127–133 (2009).

    Article  CAS  Google Scholar 

  13. Ballmann, J., Munhá, R. F. & Fryzuk, M. D. The hydride route to the preparation of dinitrogen complexes. Chem. Commun. 46, 1013–1025 (2010).

    Article  CAS  Google Scholar 

  14. Bazhenova, T. A. & Shilov, A. E. Nitrogen-fixation in solution. Coord. Chem. Rev. 144, 69–145 (1995).

    Article  CAS  Google Scholar 

  15. Shilov, A. E. Catalytic reduction of molecular nitrogen in solutions. Russ. Chem. Bull. 52, 2555–2562 (2003).

    Article  CAS  Google Scholar 

  16. Shiina, K. Reductive silylation of molecular nitrogen via fixation to tris(trialkylsilyl)amine. J. Am. Chem. Soc. 94, 9266–9267 (1972).

    Article  CAS  Google Scholar 

  17. Komori, K., Oshita, H., Mizobe, Y. & Hidai, M. Catalytic conversion of molecular nitrogen into silylamines using molybdenum and tungsten dinitrogen complexes. J. Am. Chem. Soc. 111, 1939–1940 (1989).

    Article  CAS  Google Scholar 

  18. Komori, K., Sugiura, S., Mizobe, Y., Yamada, M. & Hidai, M. Syntheses and some reactions of trimethylsilylated dinitrogen complexes of tungsten and molybdenum. Bull. Chem. Soc. Jpn 62, 2953–2959 (1989).

    Article  CAS  Google Scholar 

  19. Oshita, H., Mizobe, Y. & Hidai, M. Preparation and properties of molybdenum and tungsten dinitrogen complexes XLI: silylation and germylation of a coordinated dinitrogen in cis-[M(N2)2(PMe2Ph)4] (M=Mo, W) using R3ECl/NaI and R3ECl/Na mixtures (E=Si, Ge). X-ray structure of trans-[WI(NNGePh3)(PMe2Ph)4]·C6H6 . J. Organomet. Chem. 456, 213–220 (1993).

    Article  CAS  Google Scholar 

  20. Mori, M. Activation of nitrogen for organic synthesis. J. Organomet. Chem. 689, 4210–4227 (2004) and references therein.

    Article  CAS  Google Scholar 

  21. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  Google Scholar 

  22. Ritleng, V. et al. Molybdenum triamidoamine complexes that contain hexa-tert-butylterphenyl, hexamethylterphenyl, or p-bromohexaisopropylterphenyl substituents. An examination of some catalyst variations for the catalytic reduction of dinitrogen. J. Am. Chem. Soc. 126, 6150–6163 (2004).

    Article  CAS  Google Scholar 

  23. Neese, F. The Yandulov/Schrock cycle and the nitrogenase reaction: pathways of nitrogen fixation studied by density functional theory. Angew. Chem. Int. Ed. 45, 196–199 (2006).

    Article  CAS  Google Scholar 

  24. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).

    Article  CAS  Google Scholar 

  25. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment. Angew. Chem. Int. Ed. 47, 5512–5522 (2008).

    Article  CAS  Google Scholar 

  26. Nishibayashi, Y., Iwai, S. & Hidai, M. Bimetallic system for nitrogen fixation: ruthenium-assisted protonation of coordinated N2 on tungsten with H2 . Science 279, 540–542 (1998).

    Article  CAS  Google Scholar 

  27. Nishibayashi, Y., Takemoto, S., Iwai, S. & Hidai, M. Formation of ammonia in the reactions of a tungsten dinitrogen with ruthenium dihydrogen complexes under mild reaction conditions. Inorg. Chem. 39, 5946–5957 (2000).

    Article  CAS  Google Scholar 

  28. Nishibayashi, Y., Iwai, S. & Hidai, M. A model for protonation of dinitrogen by nitrogenase: protonation of coordinated dinitrogen on tungsten with hydrosulfido-bridged dinuclear complexes. J. Am. Chem. Soc. 120, 10559–10560 (1998).

    Article  CAS  Google Scholar 

  29. Nishibayashi, Y., Wakiji, I., Hirata, K., DuBois, M. R. & Hidai, M. Protonation of coordinated N2 on tungsten with H2 mediated by sulfido-bridged dinuclear molybdenum complexes. Inorg. Chem. 40, 578–580 (2001).

    Article  CAS  Google Scholar 

  30. Nishibayashi, Y. et al. Buckminsterfullerenes: a non-metal system for nitrogen fixation. Nature 428, 279–280 (2004).

    Article  CAS  Google Scholar 

  31. Yuki, M., Miyake, Y., Nishibayashi, Y., Wakiji, I. & Hidai, M. Synthesis and reactivity of tungsten– and molybdenum–dinitrogen complexes bearing ferrocenyldiphosphines toward protonolysis. Organometallics 27, 3947–3953 (2008).

    Article  CAS  Google Scholar 

  32. Yuki, M., Midorikawa, T., Miyake, Y. & Nishibayashi, Y. Synthesis and protonolysis of tungsten– and molybdenum–dinitrogen complexes bearing ruthenocenyldiphosphines. Organometallics 28, 4741–4746 (2009).

    Article  CAS  Google Scholar 

  33. Yuki, M., Miyake, Y. & Nishibayashi, Y. Preparation and protonation of tungsten– and molybdenum–dinitrogen complexes bearing bis(dialkylphosphinobenzene)chromiums as auxiliary ligands. Organometallics 28, 5821–5827 (2009).

    Article  CAS  Google Scholar 

  34. van der Vlugt, J. I. & Reek, J. N. H. Neutral tridentate PNP ligands and their hybrid analogues: versatile non-innocent scaffolds for homogeneous catalysis. Angew. Chem. Int. Ed. 48, 8832–8846 (2009).

    Article  CAS  Google Scholar 

  35. Chatt, J., Heath, G. A. & Richards, R. L. Diazene-N-(di-imide) and hydrazido-(2-)N-(aminoimido) complexes: the addition of acids to dinitrogen complexes. J. Chem. Soc. Dalton Trans. 2074–2082 (1974).

  36. Hidai, M., Tominari, K. & Uchida, Y. Preparation and properties of dinitrogen–molybdenum complexes. J. Am. Chem. Soc. 94, 110–114 (1972).

    Article  CAS  Google Scholar 

  37. Castellani, M. P., Geib, S. J., Rheingold, A. L. & Trogler, W. C. Syntheses, reactivities, molecular structures, and physical properties of paramagnetic bis(tetraphenylcyclopentadienyl) complexes of vanadium, chromium, cobalt, and nickel. Organometallics 6, 1703–1712 (1987).

    Article  CAS  Google Scholar 

  38. Augustin-Nowacka, D. & Chmurzyñski, L. A potentiometric study of acid–base equilibria of substituted pyridines in acetonitrile. Anal. Chim. Acta 381, 215–220 (1999).

    Article  CAS  Google Scholar 

  39. Nurminen, E. J., Mattinen, J. K. & Lönnberg, H. Nucleophilic and acid catalysis in phosphoramidite alcoholysis. J. Chem. Soc. Perkin Trans. 2, 2159–2165 (2001).

    Article  Google Scholar 

  40. Fagnou, K. & Lautens, M. Halide effects in transition metal catalysis, Angew. Chem. Int. Ed. 41, 26–47 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Y.K. Kato and T. Shimada (University of Tokyo) for Raman spectroscopy measurements and to K. Nozaki and K. Nakano (University of Tokyo) for TOF MS analysis. This work was supported by Grant-in-Aids for Scientific Research for Young Scientists (S) (no. 19675002) and for Scientific Research on Priority Areas (no. 18066003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.N. directed and conceived the project and wrote the manuscript. K.A. designed and performed all experiments, including the X-ray study, and wrote the experimental details in the Supplementary Information. Y.M. carried out Raman spectroscopy measurements and TOF MS analysis. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Yoshiaki Nishibayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 983 kb)

Supplementary information

Crystallographic data for compound 1a (CIF 63 kb)

Supplementary information

Crystallographic data for compound 2a (CIF 31 kb)

Supplementary information

Crystallographic data for compound 3a (CIF 40 kb)

Supplementary information

Crystallographic data for compound 7a (CIF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nature Chem 3, 120–125 (2011). https://doi.org/10.1038/nchem.906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.906

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing