Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ion mobility–mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation

Abstract

Amyloid cascades that lead to peptide β-sheet fibrils and plaques are central to many important diseases. Recently, intermediate assemblies of these cascades were identified as the toxic agents that interact with cellular machinery. The location and cause of the transformation from a natively unstructured assembly to the β-sheet oligomers found in all fibrils is important in understanding disease onset and the development of therapeutic agents. Largely, research on this early oligomeric region was unsuccessful because all the traditional techniques measure only the average oligomer properties of the ensemble. We utilized ion-mobility methods to deduce the peptide self-assembly mechanism and examined a series of amyloid-forming peptides clipped from larger peptides or proteins associated with disease. We provide unambiguous evidence for structural transitions in each of these fibril-forming peptide systems and establish the potential of this method for the development of therapeutic agents and drug evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed processes during the soluble stage of peptide self-assembly in amyloid formation.
Figure 2: Peptide aggregation observed by IMS-MS for the peptides YGGFL and VEALYL.
Figure 3: AFM imaging for the peptides YGGFL and VEALYL.
Figure 4: Measured collision cross-sections as a function of the oligomer number n for YGGFL, NNQQNY, VEALYL and SSTNVG.
Figure 5: Proposed self-assembly pathways of YGGFL, NNQQNY, VEALYL and SSTNVG.

Similar content being viewed by others

References

  1. Gleiter, R., Werz, D. B. & Rausch, B. J. A world beyond hydrogen bonds? Chalcogen–chalcogen interactions yielding tubular structures. Chem. Eur. J. 9, 2676–2683 (2003).

    Article  CAS  Google Scholar 

  2. Bong, D. T., Clark, T. D., Granja, J. R. & Ghadiri, M. R. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40, 988–1011 (2001).

    Article  CAS  Google Scholar 

  3. Hamley, I. W. Peptide fibrillization. Angew. Chem. Int. Ed. 46, 8128–8147 (2007).

    Article  CAS  Google Scholar 

  4. Couet, J., Samuel, J. D., Kopyshev, A., Santer, S. & Biesalski, M. Peptide–polymer hybrid nanotubes. Angew. Chem. Int. Ed. 44, 3297–3301 (2005).

    Article  CAS  Google Scholar 

  5. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).

    Article  CAS  Google Scholar 

  6. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    Article  CAS  Google Scholar 

  7. Lear, J. D., Wasserman, Z. R. & DeGrado, W. F. Synthetic amphiphilic peptide models for protein ion channels. Science 240, 1177–1181 (1988).

    Article  CAS  Google Scholar 

  8. Fowler, D. M., Koulov, A. V., Balch, W. E. & Kelly, J. W. Functional amyloid – from bacteria to humans. Trends Biochem. Sci. 32, 217–224 (2007).

    Article  CAS  Google Scholar 

  9. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  Google Scholar 

  10. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  11. Hartgerink, J. D., Clark, T. D. & Ghadiri, M. R. Peptide nanotubes and beyond. Chem. Eur. J. 4, 1367–1372 (1998).

    Article  CAS  Google Scholar 

  12. Sipe, J. D. & Cohen, A. S. Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98 (2000).

    Article  CAS  Google Scholar 

  13. Chiti, F. & Dobson, C. M. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5, 15–21 (2008).

    Article  Google Scholar 

  14. Nelson, R. & Eisenberg, D. Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol. 16, 260–265 (2006).

    Article  CAS  Google Scholar 

  15. Luhrs, T. et al. 3D structure of Alzheimer's amyloid-beta(1–42) fibrils. Proc. Natl Acad. Sci. USA 102, 17342–17347 (2005).

    Article  CAS  Google Scholar 

  16. Morris, A. M., Watzky, M. A. & Finke, R. G. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim. Biophys. Acta 1794, 375–397 (2009).

    Article  CAS  Google Scholar 

  17. Eisenberg, D. et al. The structural biology of protein aggregation diseases: fundamental questions and some answers. Acc. Chem. Res. 39, 568–575 (2006).

    Article  CAS  Google Scholar 

  18. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  Google Scholar 

  19. Ehrnhoefer, D. E. et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Biol. 15, 558–566 (2008).

    Article  CAS  Google Scholar 

  20. Kodali, R. & Wetzel, R. Polymorphism in the intermediates and products of amyloid assembly. Curr. Opin. Struct. Biol. 17, 48–57 (2007).

    Article  CAS  Google Scholar 

  21. Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  Google Scholar 

  22. Kirkitadze, M. D., Bitan, G. & Teplow, D. B. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J. Neurosci. Res. 69, 567–577 (2002).

    Article  CAS  Google Scholar 

  23. Bernstein, S. L. et al. Amyloid–β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chem. 1, 326–331 (2009).

    Article  CAS  Google Scholar 

  24. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  Google Scholar 

  25. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  Google Scholar 

  26. Glabe, C. G. Conformation-dependent antibodies target diseases of protein misfolding. Trends Biochem. Sci. 29, 542–547 (2004).

    Article  CAS  Google Scholar 

  27. Dupuis, N. F., Wu, C., Shea, J. E. & Bowers, M. T. Human islet amyloid polypeptide monomers form ordered β-hairpins: a possible amyloidogenic conformation. J. Am. Chem. Soc. 131, 18283–18292 (2009).

    Article  CAS  Google Scholar 

  28. Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegen. 2: (2007).

    Article  Google Scholar 

  29. Larson, J. L., Ko, E. & Miranker, A. D. Direct measurement of islet amyloid polypeptide fibrillogenesis by mass spectrometry. Protein Sci. 9, 427–431 (2000).

    Article  CAS  Google Scholar 

  30. Smith, R. D., Lightwahl, K. J., Winger, B. E. & Loo, J. A. Preservation of noncovalent associations in electrospray ionization mass-spectrometry – multiply charged polypeptide and protein dimers. Org. Mass Spectrom. 27, 811–821 (1992).

    Article  CAS  Google Scholar 

  31. Lightwahl, K. J., Schwartz, B. L. & Smith, R. D. Observation of the noncovalent quaternary associations of proteins by electrospray-ionization mass-spectrometry. J. Am. Chem. Soc. 116, 5271–5278 (1994).

    Article  CAS  Google Scholar 

  32. Smith, R. D. & Lightwahl, K. J. The observation of noncovalent interactions in solution by electrospray-ionization mass-spectrometry – promise, pitfalls and prognosis. Biol. Mass Spectrom. 22, 493–501 (1993).

    Article  CAS  Google Scholar 

  33. Nettleton, E. J. et al. Characterization of the oligomeric states of insulin in self-assembly and amyloid formation by mass spectrometry. Biophys. J. 79, 1053–1065 (2000).

    Article  CAS  Google Scholar 

  34. Caddy, G. L. & Robinson, C. V. Insights into amyloid fibril formation from mass spectrometry. Protein Pept. Lett. 13, 255–260 (2006).

    Article  CAS  Google Scholar 

  35. Loo, J. A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997).

    Article  CAS  Google Scholar 

  36. von Helden, G., Gotts, N. G. & Bowers, M. T. Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature 363, 60–63 (1993).

    Article  CAS  Google Scholar 

  37. von Helden, G., Wyttenbach, T. & Bowers, M. T. Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science 267, 1483–1485 (1995).

    Article  CAS  Google Scholar 

  38. Bowers, M. T., Kemper, P. R., von Helden, G. & van Koppen, P. A. M. Gas-phase ion chromatography – transition-metal state selection and carbon cluster formation. Science 260, 1446–1451 (1993).

    Article  CAS  Google Scholar 

  39. Ruotolo, B. T. et al. Evidence for macromolecular protein rings in the absence of bulk water. Science 310, 1658–1661 (2005).

    Article  CAS  Google Scholar 

  40. Smith, G. D. & Griffin, J. F. Conformation of [Leu5] enkephalin from X-ray diffraction: features important for recognition at opiate receptor. Science 199, 1214–1216 (1978).

    Article  CAS  Google Scholar 

  41. Deschamps, J. R., George, C. & Flippen-Anderson, J. L. Structural studies of opioid peptides: a review of recent progress in X-ray diffraction studies. Biopolymers 40, 121–139 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation and the National Institutes of Health. A prototype Synapt instrument was provided by the Waters Corporation. C.B. thanks the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship. The authors thank J. O'Dea for obtaining the AFM images. We thank R. Gleiter and D.B. Werz for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.B., N.F.D. and T.W. made the measurements and C.B. and M.T.B. designed the study and co-wrote the paper.

Corresponding author

Correspondence to Michael T. Bowers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleiholder, C., Dupuis, N., Wyttenbach, T. et al. Ion mobility–mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nature Chem 3, 172–177 (2011). https://doi.org/10.1038/nchem.945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing