Articles in 2017

Filter By:

  • Building materials with clusters instead of atoms promises unconventional properties, but those 'superatomic solids' are often too fragile to manipulate. Now, intercalating a guest within an ionic layered solid made of fullerenes and metal chalcogenide clusters greatly alters its conductivity and optical properties without disrupting its crystalline structure.

    • Shiv N. Khanna
    • Arthur C. Reber
    News & Views
  • Named after a mysterious place, thulium — one of the rarest rare earths — has some exotic chemistry in store for us, says Polly Arnold.

    • Polly Arnold
    In Your Element
  • The use of mechanical force to break and build chemical bonds in polymers can enable transformations that cannot be conducted using stimuli such as light and heat. Now, an insulating polymer has been mechanically unzipped to create a semiconducting polymer with extended regions of conjugation.

    • Stephen L. Craig
    News & Views
  • The anthraquinone and enediyne halves of the antitumor antibiotic dynemicin A were previously thought to be assembled by two separate polyketide synthases (PKS). Now, a single polyketide synthase has been proposed to be responsible for their production, and a working model for their biosynthesis from a common octaketide intermediate has been suggested.

    • Douglas R. Cohen
    • Craig A. Townsend
    Article
  • Nonribosomal peptide synthetases (NRPSs) produce vital natural products but have proven recalcitrant to biosynthetic engineering. Now, a combination of yeast surface display and fluorescence-activated cell sorting (FACS) has been used to reprogram an L-Phe-incorporating module for β-Phe. The resulting module is highly selective and functions efficiently in NRPS pathways.

    • David L. Niquille
    • Douglas A. Hansen
    • Donald Hilvert
    Article
  • Water oxidation is key to the production of chemical fuels from electricity. Now, guided by theory, NiCoFeP oxyhydroxide catalysts have been developed that require an overpotential lower than that required by IrO2. In situ soft X-ray absorption studies of neutral-pH NiCoFeP catalysts indicate formation of Ni4+, which is favourable for water oxidation.

    • Xueli Zheng
    • Bo Zhang
    • Edward H. Sargent
    Article
  • Tau aggregation is associated with Alzheimer's disease and dozens of related dementias. Now atomic structures of the aggregation-prone segment VQIINK in repeat 2 of tau have been reported. Inhibitors designed using these structures block seeding by full-length tau better than inhibitors that target the VQIVYK aggregation segment in repeat 3.

    • P. M. Seidler
    • D. R. Boyer
    • D. S. Eisenberg
    Article
  • Within natural product biosynthetic pathways, nature has evolved highly selective catalysts capable of complexity-generating reactions. Leveraging these tools, a suite of catalysts with complementary site- and stereoselectivity have been applied to the oxidative dearomatization of phenolic compounds, enabling one-pot transformations of phenols into various natural products.

    • Summer A. Baker Dockrey
    • April L. Lukowski
    • Alison R. H. Narayan
    Article
  • Phosphorylation of (pre)biological molecules in water has been a long-sought goal in prebiotic chemistry. Now, it has been demonstrated that diamidophosphate phosphorylates nucleosides, amino acids and glycerol/fatty acids in aqueous medium, while simultaneously leading to higher-order structures such as oligonucleotides, peptides and liposomes in the same reaction mixture.

    • Clémentine Gibard
    • Subhendu Bhowmik
    • Ramanarayanan Krishnamurthy
    Article
  • Cyclic amines bearing α-substituents are valuable building blocks for drug discovery and natural product synthesis. Introduction of α-substituents via site-selective replacement of C–H bonds is highly attractive but typically limited to protected amine substrates. Now, an operationally simple hydride-transfer-based approach enables the introduction of α-substituents on unprotected amines.

    • Weijie Chen
    • Longle Ma
    • Daniel Seidel
    Article
  • The rate constant of DNA hybridization varies over several orders of magnitude and is affected by temperature and DNA sequence. A machine-learning algorithm that is capable of accurately predicting hybridization rate constants has now been developed. Tests with this algorithm showed that over 90% of predictions were correct to within a factor of three.

    • Jinny X. Zhang
    • John Z. Fang
    • David Yu Zhang
    Article
  • Primer exchange reaction (PER) cascades have now been used to grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis occurs in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal processing and actuation capabilities.

    • Jocelyn Y. Kishi
    • Thomas E. Schaus
    • Peng Yin
    Article
  • Electrochemical water oxidation in acidic media is a promising water-splitting technique, but typically requires noble metal catalysts. Now, two polyoxometalate salts based on earth-abundant metals have shown excellent catalytic performance for the oxygen evolution reaction. The barium salt of a cobalt-phosphotungstate polyanion outperformed the state-of-the-art IrO2 catalyst at pHs lower than 1.

    • Marta Blasco-Ahicart
    • Joaquín Soriano-López
    • J. R. Galan-Mascaros
    Article
  • Although predicted many years ago, chemically reactive termolecular reactions were thought to be unimportant in defining the behaviour of combustion systems. Now, calculations have shown that such reactions between radicals and long-lived bimolecular complexes can actually play an important role in hydrogen combustion.

    • Rex T. Skodje
    News & Views
  • Iulia Georgescu explains her fascination with the elusive element 113.

    • Iulia Georgescu
    In Your Element
  • Understanding the biological roles of modifications to DNA, RNA and proteins is critical to revealing how cells regulate gene expression in development and disease. Two papers now present a combination of new tools and discoveries that could enable biologists and chemical biologists to better study epigenetic regulation in mammals.

    • Bryan T. Harada
    • Chuan He
    News & Views
  • We all appreciate how chemical knowledge has advanced over the years, but Bruce C. Gibb reminds us that chemical culture has similarly made great advances.

    • Bruce C. Gibb
    Thesis
  • Both the topology and the mechanical strength of woven materials have inspired great synthetic efforts to replicate their structures at the nanoscale. Now, a triaxial weave has been prepared by self-assembly of a judiciously designed organic molecule through π–π and CH–π interactions.

    • Yi Liu
    News & Views
  • Colloidal particles of metal–organic frameworks (ZIF-8 and UiO-66) with different polyhedral shapes can self-assemble into well-ordered, porous three-dimensional superstructures. These superstructures function as photonic crystals, with a photonic band gap that depends on the size of the MOF particles and shifts upon the sorption of guests within their pores.

    • Civan Avci
    • Inhar Imaz
    • Daniel Maspoch
    Article
  • The emergence of synthetic fluorescent nucleobases that can be incorporated into DNA and RNA in place of their natural counterparts has enabled new tools and technologies with applications in chemistry, biology and biomedicine. This Review discusses chemical insights into canonical and non-canonical nucleobase designs, relating structure to properties.

    • Wang Xu
    • Ke Min Chan
    • Eric T. Kool
    Review Article