Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct α-C–H bond functionalization of unprotected cyclic amines

Abstract

Cyclic amines are ubiquitous core structures of bioactive natural products and pharmaceutical drugs. Although the site-selective abstraction of C–H bonds is an attractive strategy for preparing valuable functionalized amines from their readily available parent heterocycles, this approach has largely been limited to substrates that require protection of the amine nitrogen atom. In addition, most methods rely on transition metals and are incompatible with the presence of amine N–H bonds. Here we introduce a protecting-group-free approach for the α-functionalization of cyclic secondary amines. An operationally simple one-pot procedure generates products via a process that involves intermolecular hydride transfer to generate an imine intermediate that is subsequently captured by a nucleophile, such as an alkyl or aryl lithium compound. Reactions are regioselective and stereospecific and enable the rapid preparation of bioactive amines, as exemplified by the facile synthesis of anabasine and (–)-solenopsin A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods for amine α-C–H bond functionalization and the new concept for secondary amines.
Figure 2: Control studies and simplification of the set-up conditions.

Similar content being viewed by others

References

  1. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  Google Scholar 

  2. Vo, C.-V. T. & Bode, J. W. Synthesis of saturated N-heterocycles. J. Org. Chem. 79, 2809–2815 (2014).

    Article  CAS  Google Scholar 

  3. Campos, K. R. Direct sp3 C–H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 36, 1069–1084 (2007).

    Article  CAS  Google Scholar 

  4. Mitchell, E. A., Peschiulli, A., Lefevre, N., Meerpoel, L. & Maes, B. U. W. Direct α-functionalization of saturated cyclic amines. Chem. Eur. J. 18, 10092–10142 (2012).

    Article  CAS  Google Scholar 

  5. Beak, P. & Lee, W.-K. α-lithioamine synthetic equivalents from dipole-stabilized carbanions: the t-Boc group as an activator for α′-lithiation of carbamates. Tetrahedron Lett. 30, 1197–1200 (1989).

    Article  CAS  Google Scholar 

  6. Beak, P., Kerrick, S. T., Wu, S. & Chu, J. Complex induced proximity effects: enantioselective syntheses based on asymmetric deprotonations of Noc-pyrrolidines. J. Am. Chem. Soc. 116, 3231–3239 (1994).

    Article  CAS  Google Scholar 

  7. McGrath, M. J. & O'Brien, P. Catalytic asymmetric deprotonation using a ligand exchange approach. J. Am. Chem. Soc. 127, 16378–16379 (2005).

    Article  CAS  Google Scholar 

  8. Seel, S. et al. Highly diastereoselective arylations of substituted piperidines. J. Am. Chem. Soc. 133, 4774–4777 (2011).

    Article  CAS  Google Scholar 

  9. Beng, T. K., Woo, J. S. & Gawley, R. E. Synthetic applications and inversion dynamics of configurationally stable 2-lithio-2-arylpyrrolidines and -piperidines. J. Am. Chem. Soc. 134, 14764–14771 (2012).

    Article  CAS  Google Scholar 

  10. Cordier, C. J., Lundgren, R. J. & Fu, G. C. Enantioconvergent cross-couplings of racemic alkylmetal reagents with unactivated secondary alkyl electrophiles: catalytic asymmetric Negishi α-alkylations of Noc-pyrrolidine. J. Am. Chem. Soc. 135, 10946–10949 (2013).

    Article  CAS  Google Scholar 

  11. Li, X. & Coldham, I. Synthesis of 1,1-disubstituted tetrahydroisoquinolines by lithiation and substitution, with in situ IR spectroscopy and configurational stability studies. J. Am. Chem. Soc. 136, 5551–5554 (2014).

    Article  CAS  Google Scholar 

  12. Campos, K. R., Klapars, A., Waldman, J. H., Dormer, P. G. & Chen, C.-Y. Enantioselective, palladium-catalyzed α-arylation of Noc-pyrrolidine. J. Am. Chem. Soc. 128, 3538–3539 (2006).

    Article  CAS  Google Scholar 

  13. Pastine, S. J., Gribkov, D. V. & Sames, D. sp3 C–H bond arylation directed by amidine protecting group: α-arylation of pyrrolidines and piperidines. J. Am. Chem. Soc. 128, 14220–14221 (2006).

    Article  CAS  Google Scholar 

  14. Spangler, J. E., Kobayashi, Y., Verma, P., Wang, D.-H. & Yu, J.-Q. α-arylation of saturated azacycles and N-methylamines via palladium(II)-catalyzed C(sp3)–H coupling. J. Am. Chem. Soc. 137, 11876–11879 (2015).

    Article  CAS  Google Scholar 

  15. Jain, P., Verma, P., Xia, G. & Yu, J.-Q. Enantioselective amine α-functionalization via palladium-catalysed C–H arylation of thioamides. Nat. Chem. 9, 140–144 (2017).

    Article  CAS  Google Scholar 

  16. Shono, T., Matsumura, Y. & Tsubata, K. Electroorganic chemistry. 46. A new carbon–carbon bond forming reaction at the α-position of amines utilizing anodic oxidation as a key step. J. Am. Chem. Soc. 103, 1172–1176 (1981).

    Article  CAS  Google Scholar 

  17. Li, Z. P. & Li, C. J. CuBr-catalyzed efficient alkynylation of sp3 C–H bonds adjacent to a nitrogen atom. J. Am. Chem. Soc. 126, 11810–11811 (2004).

    Article  CAS  Google Scholar 

  18. Girard, S. A., Knauber, T. & Li, C.-J. The cross-dehydrogenative coupling of C(sp3)–H bonds: a versatile strategy for C–C bond formations. Angew. Chem. Int. Ed. 53, 74–100 (2014).

    Article  CAS  Google Scholar 

  19. McNally, A., Prier, C. K. & MacMillan, D. W. C. Discovery of an α-amino C–H arylation reaction using the strategy of accelerated serendipity. Science 334, 1114–1117 (2011).

    Article  CAS  Google Scholar 

  20. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    Article  CAS  Google Scholar 

  21. Beatty, J. W. & Stephenson, C. R. J. Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc. Chem. Res. 48, 1474–1484 (2015).

    Article  CAS  Google Scholar 

  22. Yoshikai, N., Mieczkowski, A., Matsumoto, A., Ilies, L. & Nakamura, E. Iron-catalyzed C–C bond formation at α-position of aliphatic amines via C–H bond activation through 1,5-hydrogen transfer. J. Am. Chem. Soc. 132, 5568–5569 (2010).

    Article  CAS  Google Scholar 

  23. Haibach, M. C. & Seidel, D. C–H bond functionalization through intramolecular hydride transfer. Angew. Chem. Int. Ed. 53, 5010–5036 (2014).

    Article  CAS  Google Scholar 

  24. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  Google Scholar 

  25. Millet, A., Larini, P., Clot, E. & Baudoin, O. Ligand-controlled β-selective C(sp3)–H arylation of Noc-piperidines. Chem. Sci. 4, 2241–2247 (2013).

    Article  CAS  Google Scholar 

  26. Topczewski, J. J., Cabrera, P. J., Saper, N. I. & Sanford, M. S. Palladium-catalysed transannular C–H functionalization of alicyclic amines. Nature 531, 220–224 (2016).

    Article  CAS  Google Scholar 

  27. Payne, P. R., Garcia, P., Eisenberger, P., Yim, J. C. H. & Schafer, L. L. Tantalum catalyzed hydroaminoalkylation for the synthesis of α- and β-substituted N-heterocycles. Org. Lett. 15, 2182–2185 (2013).

    Article  CAS  Google Scholar 

  28. Zhang, C., De, C. K., Mal, R. & Seidel, D. α-amination of nitrogen heterocycles: ring-fused aminals. J. Am. Chem. Soc. 130, 416–417 (2008).

    Article  CAS  Google Scholar 

  29. Seidel, D. The azomethine ylide route to amine C–H functionalization: redox versions of classic reactions and a pathway to new transformations. Acc. Chem. Res. 48, 317–328 (2015).

    Article  CAS  Google Scholar 

  30. Majewski, M. & Gleave, D. M. Reduction with lithium dialkylamides. J. Organomet. Chem. 470, 1–16 (1994).

    Article  CAS  Google Scholar 

  31. Scully, F. E. Regioselective 2-alkylation and 2-arylation of piperidine and pyrrolidine via organolithiation of cyclic imines. J. Org. Chem. 45, 1515–1517 (1980).

    Article  CAS  Google Scholar 

  32. Wittig, G. & Hesse, A. Zur Reaktionsweise N-metallierter acyclischer und cyclischer sekundärer amine. Liebigs Ann. Chem. 746, 149–173 (1971).

    Article  CAS  Google Scholar 

  33. Yujiro, N., Keiichiro, O., Yoshito, T. & Shuji, T. One-step synthesis and structural confirmation of 1-pyrroline trimer. Chem. Lett. 6, 693–696 (1977).

    Article  Google Scholar 

  34. MacConnell, J. G., Blum, M. S. & Fales, H. M. Alkaloid from fire ant venom: identification and synthesis. Science 168, 840–841 (1970).

    Article  CAS  Google Scholar 

  35. Crooks, P. A. in Analytical Determination of Nicotine and Related Compounds and their Metabolites (eds Gorrod, J. W. & Jacob, P. III ) 69–147 (Elsevier, 1999).

    Book  Google Scholar 

  36. Coe, J. W. et al. Varenicline: an α4β2 nicotinic receptor partial agonist for smoking cessation. J. Med. Chem. 48, 3474–3477 (2005).

    Article  CAS  Google Scholar 

  37. Colpaert, F. C. Discovering risperidone: the LSD model of psychopathology. Nat. Rev. Drug Discov. 2, 315–320 (2003).

    Article  CAS  Google Scholar 

  38. Yamataka, H., Kawafuji, Y., Nagareda, K., Miyano, N. & Hanafusa, T. Electron transfer in the additions of organolithium reagents to benzophenone and benzaldehyde. J. Org. Chem. 54, 4706–4708 (1989).

    Article  CAS  Google Scholar 

  39. Yamataka, H., Miyano, N. & Hanafusa, T. Comparative mechanistic study of the reactions of benzophenone with N-butylmagnesium bromide and N-butyllithium. J. Org. Chem. 56, 2573–2575 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the NIH–NIGMS (R01GM101389) is gratefully acknowledged. We thank T. Emge (Rutgers University) for the crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

W.C. and L.M. developed the amine α-functionalization and contributed equally to this work. A.P. further developed the reaction and expanded the scope. D.S. conceived and supervised the project and wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Daniel Seidel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7926 kb)

Supplementary information

Crystallographic data for compound ±45. (CIF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Ma, L., Paul, A. et al. Direct α-C–H bond functionalization of unprotected cyclic amines. Nature Chem 10, 165–169 (2018). https://doi.org/10.1038/nchem.2871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing