Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ever-expanding role of HIF in tumour and stromal biology

Abstract

Low oxygen tension (hypoxia) is a hallmark of cancer that influences cancer cell function, but is also an important component of the tumour microenvironment as it alters the extracellular matrix, modulates the tumour immune response and increases angiogenesis. Here we discuss the regulation and role of hypoxia and its key transcriptional mediators, the hypoxia-inducible factor (HIF) family of transcription factors, in the tumour microenvironment and stromal compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oyxgen-dependent and -independent regulation of HIF signalling.
Figure 2: Non-canonical regulation of HIF by cell signalling and metabolism.
Figure 3: Tumour hypoxia co-opts the stroma to potentiate tumorigenesis.
Figure 4: Hypoxia and HIF signalling effects on immune cells in the tumour microenvironment.

Similar content being viewed by others

References

  1. Vaupel, P. & Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metast. Rev. 26, 225–239 (2007).

    Article  CAS  Google Scholar 

  2. Nagy, J. A., Chang, S. H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 100, 865–869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Finger, E. C. & Giaccia, A. J. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metast. Rev. 29, 285–293 (2010).

    Article  CAS  Google Scholar 

  5. Semenza, G. L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Wiesener, M. S. et al. Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J. 17, 271–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robinson, C. M. & Ohh, M. The multifaceted Von Hippel-Lindau tumour suppressor protein. FEBS Lett. 588, 2704–2711 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95, 7987–7992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Coleman, M. L. & Ratcliffe, P. J. Signalling cross talk of the HIF system: involvement of the FIH protein. Curr. Pharm. Design 15, 3904–3907 (2009).

    Article  CAS  Google Scholar 

  12. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhong, H. et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545 (2000).

    CAS  PubMed  Google Scholar 

  14. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Brugarolas, J. B., Vazquez, F., Reddy, A., Sellers, W. R. & Kaelin, W. G. Jr TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4, 147–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Mayerhofer, M., Valent, P., Sperr, W. R., Griffin, J. D. & Sillaber, C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 100, 3767–3775 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Faubert, B. et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc. Natl Acad. Sci. USA 111, 2554–2559 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shackelford, D. B. et al. mTOR and HIF-1α-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc. Natl Acad. Sci. USA 106, 11137–11142 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Naggar, A. M. et al. Translational activation of HIF1α by YB-1 promotes sarcoma metastasis. Cancer Cell 27, 682–697 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Chou, C. C., Chuang, H. C., Salunke, S. B., Kulp, S. K. & Chen, C. S. A novel HIF-1α-integrin-linked kinase regulatory loop that facilitates hypoxia-induced HIF-1α expression and epithelial-mesenchymal transition in cancer cells. Oncotarget 6, 8271–8285 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakamura, H. et al. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J. Immunol. 174, 7592–7599 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Chisolm, D. A. & Weinmann, A. S. TCR-signaling events in cellular metabolism and specialization. Front. Immunol. 6, 292 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noman, M. Z. et al. The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J. Immunol. 182, 3510–3521 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blouin, C. C., Page, E. L., Soucy, G. M. & Richard, D. E. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1α. Blood 103, 1124–1130 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Jantsch, J. et al. Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1α (HIF1A) and result in differential HIF1A-dependent gene expression. J. Leukocyte Biol. 90, 551–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Kurokawa, H. et al. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime. Sci. Rep. 5, 10657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong, Y. & Agani, F. H. Oligomycin inhibits HIF-1α expression in hypoxic tumor cells. Am. J. Physiol. Cell Physiol. 288, C1023–C1029 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. O'Hagan, K. A. et al. PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc. Natl Acad. Sci. USA 106, 2188–2193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan, M. et al. The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J. Clin. Invest. 124, 2640–2650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. LaGory, E. L. et al. Suppression of PGC-1α is critical for reprogramming oxidative metabolism in renal cell carcinoma. Cell Rep. 12, 116–127 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Niecknig, H. et al. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia. Free Radical Res. 46, 705–717 (2012).

    Article  CAS  Google Scholar 

  35. Bell, E. L. & Chandel, N. S. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem. 43, 17–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Mansfield, K. D. et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab. 1, 393–399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Masson, N. et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 13, 251–257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hagen, T. Oxygen versus reactive oxygen in the regulation of HIF-1α: the balance tips. Biochem. Res. Int. 2012, 436981 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Lu, H. et al. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. 280, 41928–41939 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Reitman, Z. J. & Yan, H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J. Natl Cancer Inst. 102, 932–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye, D., Ma, S., Xiong, Y. & Guan, K. L. R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell 23, 274–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wong, B. W., Kuchnio, A., Bruning, U. & Carmeliet, P. Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends Biochem. Sci. 38, 3–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, D. et al. Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep. 10, 1335–1348 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Zeng, L. et al. Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis. Oncogene 34, 4758–4766 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao, X., Wang, H., Yang, J. J., Liu, X. & Liu, Z. R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakajima, E. C. & Van Houten, B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol. Carcinogen. 52, 329–337 (2013).

    Article  CAS  Google Scholar 

  51. Peppicelli, S., Bianchini, F. & Calorini, L. Extracellular acidity, a “reappreciated” trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metast. Rev. 33, 823–832 (2014).

    Article  CAS  Google Scholar 

  52. Wang, T., Liu, G. & Wang, R. The intercellular metabolic interplay between tumor and immune cells. Front. Immunol. 5, 358 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Folkman, J. Proceedings: tumor angiogenesis factor. Cancer Res. 34, 2109–2113 (1974).

    CAS  PubMed  Google Scholar 

  56. Franses, J. W., Baker, A. B., Chitalia, V. C. & Edelman, E. R. Stromal endothelial cells directly influence cancer progression. Sci. Transl. Med. 3, 66ra5 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Coulon, C. et al. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscl. Throm. Vas. Biol. 30, 2331–2336 (2010).

    Article  CAS  Google Scholar 

  58. Polet, F. & Feron, O. Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J. Intern. Med. 273, 156–165 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, D. et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 8, 1930–1942 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. el Azzouzi, H. et al. The hypoxia-inducible microRNA cluster miR-199a214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell. Metab. 18, 341–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Krishnan, J. et al. Dietary obesity-associated HIF1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Gene. Dev. 26, 259–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rankin, E. B. et al. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol. Cell. Biol. 29, 4527–4538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang, N. et al. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6, 485–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Skuli, N. et al. Endothelial deletion of hypoxia-inducible factor-2α (HIF-2α) alters vascular function and tumor angiogenesis. Blood 114, 469–477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Skuli, N. et al. Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes. J. Clin. Invest. 122, 1427–1443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Branco-Price, C. et al. Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell 21, 52–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160, 985–1000 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Greenberg, J. I. et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cooke, V. G. et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21, 66–81 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keskin, D. et al. Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Rep. 10, 1066–1081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vasudev, N. S. & Reynolds, A. R. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17, 471–494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maione, F. et al. Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J. Clin. Invest. 122, 1832–1848 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sounni, N. E. et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab. 20, 280–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Bensaad, K. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 9, 349–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  80. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Bochet, L. et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Hinz, B. et al. The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Direkze, N. C. et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492–8495 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, J. W. et al. Loss of fibroblast HIF-1α accelerates tumorigenesis. Cancer Res. 72, 3187–3195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Madsen, C. D. et al. Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep. 16, 1394–1408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuchnio, A. et al. The cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancer-associated fibroblasts. Cell Rep. 12, 992–1005 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Cirri, P. & Chiarugi, P. Cancer associated fibroblasts: the dark side of the coin. Am. J. Cancer Res. 1, 482–497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pavlides, S. et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Martinez-Outschoorn, U. E., Lisanti, M. P. & Sotgia, F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin. Cancer Biol. 25, 47–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Chiavarina, B. et al. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells. Cell Cycle 11, 3280–3289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sonveaux, P. et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 7, e33418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fiaschi, T. et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 72, 5130–5140 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Costa, A., Scholer-Dahirel, A. & Mechta-Grigoriou, F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin. Cancer Biol. 25, 23–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391–1402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ammirante, M., Shalapour, S., Kang, Y., Jamieson, C. A. & Karin, M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc. Natl Acad. Sci. USA 111, 14776–14781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schito, L. et al. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc. Natl Acad. Sci. USA 109, E2707–E2716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Caniggia, I. et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ3 . J. Clin. Invest. 105, 577–587 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Ino, Y. et al. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS ONE 8, e55146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baginska, J. et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl Acad. Sci. USA 110, 17450–17455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Du, R. et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sitkovsky, M. & Lukashev, D. Regulation of immune cells by local-tissue oxygen tension: HIF1α and adenosine receptors. Nat. Rev. Immunol. 5, 712–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Mamlouk, S. et al. Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs tumor development. Int. J. Cancer 134, 849–858 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Casazza, A. et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Murdoch, C., Giannoudis, A. & Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Matschurat, S. et al. Regulation of EMAP II by hypoxia. Am. J. Pathol. 162, 93–103 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wen, Z. et al. Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene 34, 1241–1252 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Rolny, C. et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31–44 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Laoui, D. et al. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res. 74, 24–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Takeda, N. et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Gene. Dev. 24, 491–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Imtiyaz, H. Z. et al. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Invest. 120, 2699–2714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Doedens, A. L. et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465–7475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lu, H., Forbes, R. A. & Verma, A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem. 277, 23111–23115 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Goodwin, M. L. et al. Modeling alveolar soft part sarcomagenesis in the mouse: a role for lactate in the tumor microenvironment. Cancer Cell 26, 851–862 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814–818 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Corzo, C. A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Noman, M. Z. et al. Tumor promoting effects of myeloid derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res. 75, 3771–3787 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Sceneay, J. et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 72, 3906–3911 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Cox, T. R. et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522, 106–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Yoshida, N. et al. Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Am. J. Physiol. 262, H1891–H1898 (1992).

    CAS  PubMed  Google Scholar 

  132. Blaisdell, A. et al. Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells. Cancer Cell 28, 785–799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Walmsley, S. R. et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J. Exp. Med. 201, 105–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liang, W. & Ferrara, N. The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol. Res. 4, 83–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Le, Q. T. et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J. Clin. Oncol. 23, 8932–8941 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Viguier, M. et al. Foxp3 expressing CD4+CD25high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol. 173, 1444–1453 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Synnestvedt, K. et al. Ecto-5-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, J. H., Elly, C., Park, Y. & Liu, Y. C. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity 42, 1062–1074 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bailey, S. R. et al. Th17 cells in cancer: the ultimate identity crisis. Front. Immunol. 5, 276 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Ben-Shoshan, J., Maysel-Auslender, S., Mor, A., Keren, G. & George, J. Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1α. Eur. J. Immunol. 38, 2412–2418 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Clambey, E. T. et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA 109, E2784–E2793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Barsoum, I. B., Smallwood, C. A., Siemens, D. R. & Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74, 665–674 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303–308 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank those whose work informed the writing of this manuscript and apologize to those authors whose elegant studies we were unable to acknowledge in this Review. This work was supported by NIH grants CA-67166 and CA-197713, the Silicon Valley Foundation, the Sydney Frank Foundation and the Kimmelman Fund (A.J.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amato J. Giaccia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaGory, E., Giaccia, A. The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol 18, 356–365 (2016). https://doi.org/10.1038/ncb3330

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3330

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer