Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Safeguarding CRISPR-Cas9 gene drives in yeast

Abstract

RNA-guided gene drives capable of spreading genomic alterations made in laboratory organisms through wild populations could be used to address environmental and public health problems. However, the possibility of unintended genome editing occurring through the escape of strains from laboratories, coupled with the prospect of unanticipated ecological change, demands caution. We report the efficacy of CRISPR-Cas9 gene drive systems in wild and laboratory strains of the yeast Saccharomyces cerevisiae. Furthermore, we address concerns surrounding accidental genome editing by developing and validating methods of molecular confinement that minimize the risk of unwanted genome editing. We also present a drive system capable of overwriting the changes introduced by an earlier gene drive. These molecular safeguards should enable the development of safe CRISPR gene drives for diverse organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism and population-level effect of endonuclease gene drives.
Figure 2: Biased inheritance of an ADE2 gene drive element in S. cerevisiae.
Figure 3: Gene drives and cargo genes remain intact upon copying and can spread by targeting both nonessential and essential genes.
Figure 4: Quantitative PCR shows relative abundance of wild-type and drive-containing alleles in diploids.
Figure 5: Available safeguards include targeting synthetic sequences and reversing drive-spread phenotypic changes with subsequent drives.

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Esvelt, K.M., Smidler, A.L., Catteruccia, F. & Church, G.M. Concerning RNA-guided gene drives for the alteration of wild populations. eLifee 03401 (2014).

  2. Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Harvard University Press, 2009).

  3. Burt, A. & Koufopanou, V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr. Opin. Genet. Dev. 14, 609–615 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Macreadie, I.G., Scott, R.M., Zinn, A.R. & Butow, R.A. Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell 41, 395–402 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. Biol. Sci. 270, 921–928 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Windbichler, N. et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473, 212–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Chan, Y.-S., Naujoks, D.A., Huen, D.S. & Russell, S. Insect population control by homing endonuclease-based gene drive: an evaluation in Drosophila melanogaster.Genetics 188, 33–44 (2011).

    CAS  Google Scholar 

  8. Chan, Y.-S., Huen, D.S., Glauert, R., Whiteway, E. & Russell, S. Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience. PLoS One 8, e54130 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Takeuchi, R., Choi, M. & Stoddard, B.L. Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization. Proc. Natl. Acad. Sci. USA 111, 4061–4066 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    Article  PubMed  Google Scholar 

  13. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Friedland, A.E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10, 741–743 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Gratz, S.J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029–1035 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. DiCarlo, J.E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, W. et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, e188 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Oye, K.A. et al. Biotechnology. Regulating gene drives. Science 345, 626–628 (2014).

    Article  CAS  Google Scholar 

  19. Chamberlain, N., Cutts, N.S. & Rainbow, C. The formation of pigment and arylamine by yeasts. J. Gen. Microbiol. 7, 54–60 (1952).

    Article  CAS  Google Scholar 

  20. Mao, X., Schwer, B. & Shuman, S. Mutational analysis of the Saccharomyces cerevisiae ABD1 gene: cap methyltransferase activity is essential for cell growth. Mol. Cell. Biol. 16, 475–480 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Gantz, V.M. & Bier, E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Akbari, O.S. et al. BIOSAFETY. Safeguarding gene drive experiments in the laboratory. Science 349, 927–929 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Henkel, R.D., Miller, T. & Weyant, R.S. Monitoring select agent theft, loss and release reports in the United States—2004–2010. Appl. Biosaf. 17, 171–180 (2012).

    Article  Google Scholar 

  24. Kondo, S. & Ueda, R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195, 715–721 (2013).

    CAS  PubMed  Google Scholar 

  25. Port, F., Chen, H.-M., Lee, T. & Bullock, S.L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl. Acad. Sci. USA 111, E2967–E2976 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Ablain, J., Durand, E.M., Yang, S., Zhou, Y. & Zon, L.I.A. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev. Cell 32, 756–764 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Novitski, E., Grace, D. & Strommen, C. The entire compound autosomes of Drosophila melanogaster. Genetics 98, 257–273 (1981).

    CAS  PubMed  Google Scholar 

  28. Jain, S. et al. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev. 23, 291–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Lõoke, M., Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328 (2011).

    Article  PubMed  Google Scholar 

  31. Spitzer, M., Wildenhain, J., Rappsilber, J. & Tyers, M. BoxPlotR: a web tool for generation of box plots. Nat. Methods 11, 121–122 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to S. Doris, D. Spatt and F. Winston for their incredible patience, generosity and expertise in tetrad dissection. We also thank F. Winston for providing us with SK1 strains and members of the Church laboratory for insightful discussions. This work was supported by grants from the Department of Energy (DOE) (DE-FG02-02ER63445 to G.M.C.), National Science Foundation (NSF) (SynBERC SA5283-11210 and MCB-1330914 to G.M.C.), National Cancer Institute (NCI) (5T32CA009216-34 to A.C.), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (1K99DK102669-01 to K.M.E.) and the Wyss Institute for Biologically Inspired Engineering (Technology Development Fellowship to K.M.E.).

Author information

Authors and Affiliations

Authors

Contributions

S.L.D. initiated the study; J.E.D., A.C., S.L.D. and K.M.E. designed the experiments; J.E.D. performed the experiments with assistance from A.C.; J.E.D., A.C., S.L.D. and K.M.E. analyzed the data; and K.M.E. wrote the paper with A.C. and contributing input from J.E.D., S.L.D. and G.M.C.

Corresponding authors

Correspondence to Kevin M Esvelt or George M Church.

Ethics declarations

Competing interests

K.M.E. and G.M.C. are authors of a patent filed on CRISPR gene drive (PCT/US2015/010550). K.M.E. is author of a provisional patent filed on CRISPR gene drive (serial no. 62/236,545).

Integrated supplementary information

Supplementary Figure 1 Molecular confinement via 'split drive' sgRNA-only cassettes with chromosomal or episomal Cas9.

A) In transgenic laboratory populations expressing Cas9 (brown) from an unlinked locus such as another chromosome, the sgRNA-only drive (green) will be copied in every generation. For clarity, copying is assumed to occur when haploid cells combine to form a diploid. In our S. cerevisiae experiments, Cas9 was encoded on an episomal plasmid with imperfect inheritance that should produce a similar pattern. (B) If escaped organisms encoding an sgRNA-only drive mate with wild-type organisms, the cas9 gene quickly segregates away from the sgRNA-only drive, precluding exponential spread. Any organisms that do encode Cas9 will still exhibit drive, but the total number of copies is limited by the number of escaped organisms and therefore is dwarfed by the wild-type population. If one organism is released from the laboratory for every million wild-type organisms in the population, a perfectly efficient drive with no fitness cost will linearly increase in relative abundance by 2E-6 per generation. This tiny inheritance advantage is exceedingly unlikely to counterbalance the fitness cost of an actual split gene drive. (C) The episomal Cas9-expressing plasmid is unstable in the absence of active selection. With an average loss rate of ~3.8% per generation, more than 2/3 of yeast have lost the plasmid after a single round of asexual overnight growth (10 generations). While variable across independent mating experiments, the plasmid is typically lost at a rate of ~50% during meiotic sporulation, approximately equivalent to a chromosomal transgene. These high loss rates suggest there is minimal risk of Cas9 remaining available to bias the inheritance of the sgRNA-only cassette over generations. Indeed, mitotic loss suggests that the plasmid-encoded gene would likely be eliminated from the population more quickly than a chromosomally-integrated equivalent in the event of an accidental release.

Supplementary Figure 2 Reversal of drive-induced ADE2 loss by an overwriting drive.

Haploid yeast containing a complete autonomous ADE2-disrupting gene drive were mated with haploids containing an overwriting drive that restores ADE2 function. 15 diploid offspring were sporulated, dissected, and plated on adenine-limited plates. The resulting cream-colored colonies indicate that an intact ADE2 gene is present in all progeny, indicative of the ADE2-restoring drive successfully cutting and replacing the ADE2-disrupting gene drive.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2 and Supplementary Note (PDF 676 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiCarlo, J., Chavez, A., Dietz, S. et al. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol 33, 1250–1255 (2015). https://doi.org/10.1038/nbt.3412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3412

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research