Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Backbone modification of a polypeptide drug alters duration of action in vivo

Subjects

Abstract

Systematic modification of the backbone of bioactive polypeptides through β-amino acid residue incorporation could provide a strategy for generating molecules with improved drug properties, but such alterations can result in lower receptor affinity and potency. Using an agonist of parathyroid hormone receptor-1 (PTHR1), a G protein–coupled receptor in the B-family, we present an approach for α→β residue replacement that enables both high activity and improved pharmacokinetic properties in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Backbone-modified analogs of PTH(1-34) are active in vivo and display improved pharmacokinetic properties.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Vilardaga, J.P., Romero, G., Friedman, P.A. & Gardella, T.J. Cell. Mol. Life Sci. 68, 1–13 (2011).

    Article  CAS  Google Scholar 

  2. Serada, M. et al. Xenobiotica 42, 398–407 (2012).

    Article  CAS  Google Scholar 

  3. Uzawa, T., Hori, M., Ejiri, S. & Ozawa, H. Bone 16, 477–484 (1995).

    CAS  PubMed  Google Scholar 

  4. Horne, W.S. et al. Proc. Natl. Acad. Sci. USA 106, 14751–14756 (2009).

    Article  CAS  Google Scholar 

  5. Johnson, L.M. & Gellman, S.H. Methods Enzymol. 523, 407–429 (2013).

    Article  CAS  Google Scholar 

  6. Wade, D. et al. Proc. Natl. Acad. Sci. USA 87, 4761–4765 (1990).

    Article  CAS  Google Scholar 

  7. Chongsiriwatana, N.P. et al. Proc. Natl. Acad. Sci. USA 105, 2794–2799 (2008).

    Article  CAS  Google Scholar 

  8. Porter, E.A., Wang, X.F., Lee, H.S., Weisblum, B. & Gellman, S.H. Nature 404, 565 (2000).

    Article  CAS  Google Scholar 

  9. Schievano, E. et al. Biopolymers 70, 534–547 (2003).

    Article  CAS  Google Scholar 

  10. Peggion, E. et al. Biochemistry 41, 8162–8175 (2002).

    Article  CAS  Google Scholar 

  11. Underwood, C.R. et al. J. Biol. Chem. 285, 723–730 (2010).

    Article  CAS  Google Scholar 

  12. Denton, E.V. et al. Org. Lett. 15, 5318–5321 (2013).

    Article  CAS  Google Scholar 

  13. Boersma, M.D. et al. J. Am. Chem. Soc. 134, 315–323 (2012).

    Article  CAS  Google Scholar 

  14. Pioszak, A.A. & Xu, H.E. Proc. Natl. Acad. Sci. USA 105, 5034–5039 (2008).

    Article  CAS  Google Scholar 

  15. Hoare, S.R.J., Gardella, T.J. & Usdin, T.B. J. Biol. Chem. 276, 7741–7753 (2001).

    Article  CAS  Google Scholar 

  16. Okazaki, M. et al. Proc. Natl. Acad. Sci. USA 105, 16525–16530 (2008).

    Article  CAS  Google Scholar 

  17. Feinstein, T.N. et al. Nat. Chem. Biol. 7, 278–284 (2011).

    Article  CAS  Google Scholar 

  18. Binkowski, B.F. et al. ACS Chem. Biol. 6, 1193–1197 (2011).

    Article  CAS  Google Scholar 

  19. Winer, K.K., Sinaii, N., Peterson, D., Sainz, B. & Cutler, G.B. J. Clin. Endocrinol. Metab. 93, 3389–3395 (2008).

    Article  CAS  Google Scholar 

  20. Kostenuik, P.J. et al. J. Bone Miner. Res. 22, 1534–1547 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Institutes of Health (GM056414 (to S.H.G.) and NIDDK-11794 (to T.J.G.)). R.W.C. was supported in part by a National Institutes of Health Biotechnology Training grant (T32 GM008349).

Author information

Authors and Affiliations

Authors

Contributions

R.W.C. and S.H.G. developed the underlying molecular designs, all authors participated in the design and execution of experiments to assess new compounds, and all contributed to data interpretation. S.H.G. and R.W.C. wrote the paper with input from all other authors.

Corresponding authors

Correspondence to Thomas J Gardella or Samuel H Gellman.

Ethics declarations

Competing interests

S.H.G. is a co-founder of Longevity Biotech, Inc., which is pursuing biomedical applications of α/β-peptides. S.H.G., R.W.C. and T.J.G. are co-inventors on a patent application covering the PTH analogs described here.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–4, and Supplementary Notes 1 and 2 (PDF 2214 kb)

Supplementary Data File 1

hPTHR1 cAMP Dose Response (XLSX 33 kb)

Supplementary Data File 2

PTH analog induced calcemic response (XLSX 49 kb)

Supplementary Data File 3

PTH analog pharmacokinetic profile data (XLSX 51 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheloha, R., Maeda, A., Dean, T. et al. Backbone modification of a polypeptide drug alters duration of action in vivo. Nat Biotechnol 32, 653–655 (2014). https://doi.org/10.1038/nbt.2920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing