Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Scientific considerations in the review and approval of generic enoxaparin in the United States

Abstract

In 2010, the US Food and Drug Administration (FDA) approved a generic low-molecular-weight heparin without clinical safety or efficacy data under the Abbreviated New Drug Application (ANDA) pathway. To enable a determination of active ingredient sameness of generic and innovator enoxaparin products, the FDA developed a scientifically rigorous approach based on five criteria: first, equivalence of physicochemical properties; second, equivalence of heparin source material and mode of depolymerization; third, equivalence in disaccharide building blocks, fragment mapping and sequence of oligosaccharide species; fourth, equivalence in biological and biochemical assays; and finally, equivalence of in vivo pharmacodynamic profile. In addition to fulfillment of these criteria, FDA also used in vitro, ex vivo and model animal data to ensure there was no increased immunogenicity risk of the generic enoxaparin product relative to the brand name product. The approval of the highly complex enoxaparin product using this framework under the ANDA pathway represents a major development. It also suggests that analytical and scientific advancements may in certain cases allow the elimination of unnecessary in vivo testing in animals and humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative polysaccharide in heparin showing four disaccharide building blocks.
Figure 2
Figure 3

Similar content being viewed by others

References

  1. US Food and Drug Administration. FDA approves first generic enoxaparin sodium injection. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm220092.htm (Accessed 24 January 2012).

  2. Hirsh, J. et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 119, 64S–94S (2001).

    Article  CAS  Google Scholar 

  3. 21 CFR 320.1(c). (Code of Federal Regulations; Title 21, Food and drugs; Part 320, Bioavailability and bioequivalence requirements; FDA HHS, 2012).

  4. 21 CFR 320.1(e). (Code of Federal Regulations; Title 21, Food and drugs; Part 320, Bioavailability and bioequivalence requirements; FDA HHS, 2012).

  5. 21 CFR 320.22(b)(1). (Code of Federal Regulations; Title 21, Food and drugs; Part 320, Bioavailability and bioequivalence requirements; FDA HHS, 2012).

  6. Kozlowski, S., Woodcock, J., Midthun, K. & Sherman, R.B. Developing the nation's biosimilars program. N. Engl. J. Med. 365, 385–388 (2011).

    Article  CAS  Google Scholar 

  7. Linhardt, R.J. & Gunay, N.S. Production and chemical processing of low molecular weight heparins. Semin. Thromb. Hemost. 25 (suppl. 3), 5–16 (1999).

    CAS  PubMed  Google Scholar 

  8. Sasisekharan, R. & Venkataraman, G. Heparin and heparan sulfate: biosynthesis, structure and function. Curr. Opin. Chem. Biol. 4, 626–631 (2000).

    Article  CAS  Google Scholar 

  9. Ernst, S., Langer, R., Cooney, C.L. & Sasisekharan, R. Enzymatic degradation of glycosaminoglycans. Crit. Rev. Biochem. Mol. Biol. 30, 387–444 (1995).

    Article  CAS  Google Scholar 

  10. Guerrini, M., Bisio, A. & Torri, G. Combined quantitative H-1 and C-13 nuclear magnetic resonance spectroscopy for characterization of heparin preparations. Semin. Thromb. Hemost. 27, 473–482 (2001).

    Article  CAS  Google Scholar 

  11. Nugent, M.A. Heparin sequencing brings structure to the function of complex oligosaccharides. Proc. Natl. Acad. Sci. USA 97, 10301–10303 (2000).

    Article  CAS  Google Scholar 

  12. Linhardt, R.J. 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 46, 2551–2564 (2003).

    Article  CAS  Google Scholar 

  13. Capila, I. & Linhardt, R.J. Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41, 390–412 (2002).

    Article  CAS  Google Scholar 

  14. Pharmacopeia, US 35–NF30. Official monographs: heparin sodium. http://www.uspnf.com/uspnf (Accessed December 15, 2012).

  15. US Food and Drug Administration. Product Labeling for Lovenox (enoxaparin sodium injection). http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ (Accessed January 25, 2012).

  16. Hirsh, J. et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 119, 64S–94S (2001).

    Article  CAS  Google Scholar 

  17. Debrie, R. Mixtures of particular LMW heparinic polysaccharides for the prophylaxis/treatment of acute thrombotic events. US patent no. 5,389,618 (1995).

  18. Torri, G. & Guerrini, M. in NMR Spectroscopy in Pharmaceutical Analysis (eds. Holzgrabe, U., Wawer, I. & Diehl, B.) 407–427 (Elsevier, Oxford; 2008).

    Book  Google Scholar 

  19. Merli, G.J., Vanscoy, G.J., Rihn, T.L., Groce, J.B. III & McCormick, W. Applying scientific criteria to therapeutic interchange: a balanced analysis of low-molecular-weight heparins. J. Thromb. Thrombolysis 11, 247–259 (2001).

    Article  CAS  Google Scholar 

  20. US Food and Drug Administration. Generic enoxaparin questions and answers (updated July 23, 2010). http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm220037.htm (Accessed December 15, 2012).

  21. Nightingale, S.L. Appropriate use of low-molecular-weight heparins (LMWHs). JAMA 270, 1672 (1993).

    Article  CAS  Google Scholar 

  22. Planes, A. et al. Prevention of deep vein thrombosis after hip replacement–comparison between two low-molecular heparins, tinzaparin and enoxaparin. Thromb. Haemost. 81, 22–25 (1999).

    Article  CAS  Google Scholar 

  23. US Food and Drug Administration. Response to Citizen Petition, Docket No. FDA-2003-P-0273. http://www.regulations.gov (2010).

  24. Thanawiroon, C., Rice, K.G., Toida, T. & Linhardt, R.J. Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J. Biol. Chem. 279, 2608–2615 (2004).

    Article  CAS  Google Scholar 

  25. Mourier, P.A.J. & Viskov, C. Chromatographic analysis and sequencing approach of heparin oligosaccharides using cetyltrimethylammonium dynamically coated stationary phases. Anal. Biochem. 332, 299–313 (2004).

    Article  CAS  Google Scholar 

  26. Chuang, W.L., Christ, M.D. & Rabenstein, D.L. Determination of the primary structures of heparin- and heparan sulfate-derived oligosaccharides using band-selective homonuclear-decoupled two dimensional H-1 NMR experiments. Anal. Chem. 73, 2310–2316 (2001).

    Article  CAS  Google Scholar 

  27. Sundaram, M. et al. Rational design of low-molecular weight heparins with improved in vivo activity. Proc. Natl. Acad. Sci. USA 100, 651–656 (2003).

    Article  CAS  Google Scholar 

  28. Imanari, T., Toyoda, H., Yamamoto, H., Ogino, N. & Toida, T. Rapid and sensitive analysis of disaccharide composition in heparin and heparan sulfate by reversed-phase ion-pair chromatography on a 2 mm porous silica gel column. J. Chromatogr. A 830, 197–201 (1999).

    Article  Google Scholar 

  29. Mourier, P. & Viskov, C. Method for determining specific groups constituting heparins or low molecular weight heparins. US patent no. US2005/0119477 A1 (2005).

  30. Myette, J.R. et al. Molecular cloning of the heparin/heparan sulfate Delta 4,5 unsaturated glycuronidase from Flavobacterium heparinum, its recombinant expression in Escherichia coli, and biochemical determination of its unique substrate specificity. Biochemistry 41, 7424–7434 (2002).

    Article  CAS  Google Scholar 

  31. Stringer, S.E., Kandola, B.S., Pye, D.A. & Gallagher, J.T. Heparin sequencing. Glycobiology 13, 97–107 (2003).

    Article  CAS  Google Scholar 

  32. Linhardt, R.J. et al. Mapping and quantification of the major oligosaccharide components of heparin. Biochem. J. 254, 781–787 (1988).

    Article  CAS  Google Scholar 

  33. Chuang, W.L., McAllister, H. & Rabenstein, D.L. Chromatographic methods for product-profile analysis and isolation of oligosaccharides produced by heparinase-catalyzed depolymerization of heparin. J. Chromatogr. A 932, 65–74 (2001).

    Article  CAS  Google Scholar 

  34. Shriver, Z. et al. Sequencing of 3-O sulfate containing heparin decasaccharides with a partial antithrombin III binding site. Proc. Natl. Acad. Sci. USA 97, 10359–10364 (2000).

    Article  CAS  Google Scholar 

  35. Shriver, Z. et al. Sequencing of 3-O sulfate containing heparin decasaccharides with a partial antithrombin III binding site. Proc. Natl. Acad. Sci. USA 97, 10359–10364 (2000).

    Article  CAS  Google Scholar 

  36. Venkataraman, G., Shriver, Z., Raman, R. & Sasisekharan, R. Sequencing complex polysaccharides. Science 286, 537–542 (1999).

    Article  CAS  Google Scholar 

  37. Turnbull, J.E., Hopwood, J.J. & Gallagher, J.T. A strategy for rapid sequencing of heparan sulfate and heparin saccharides. Proc. Natl. Acad. Sci. USA 96, 2698–2703 (1999).

    Article  CAS  Google Scholar 

  38. Yamada, S. et al. Structural studies of octasaccharides derived from the low-sulfated repeating disaccharide region and octasaccharide serines derived from the protein linkage region of porcine intestinal heparin. Biochemistry 38, 838–847 (1999).

    Article  CAS  Google Scholar 

  39. Pharmacopeia, US 35–NF30. Official monographs: enoxaparin sodium. http://www.uspnf.com/uspnf (Accessed December 15, 2012).

  40. Hirsh, J. & Raschke, R. Heparin and low-molecular-weight heparin–the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126, 188s–203s (2004).

    Article  CAS  Google Scholar 

  41. Chuang, Y.J., Swanson, R., Raja, S.M. & Olson, S.T. Heparin enhances the specificity of antithrombin for thrombin and factor Xa independent of the reactive center loop sequence. Evidence for an exosite determinant of factor Xa specificity in heparin-activated antithrombin. J. Biol. Chem. 276, 14961–14971 (2001).

    Article  CAS  Google Scholar 

  42. Bisio, A. et al. Structural features of low-molecular-weight heparins affecting their affinity to antithrombin. Thromb. Haemost. 102, 865–873 (2009).

    Article  CAS  Google Scholar 

  43. Guerrini, M. et al. Effects on molecular conformation and anticoagulant activities of 1,6-anhydrosugars at the reducing terminal of antithrombin-binding octasaccharides isolated from low-molecular-weight heparin enoxaparin. J. Med. Chem. 53, 8030–8040 (2010).

    Article  CAS  Google Scholar 

  44. Rosenberg, R.D. Actions and interactions of antithrombin and heparin. N. Engl. J. Med. 292, 146–151 (1975).

    Article  CAS  Google Scholar 

  45. Jeske, W. & Fareed, J. In vitro studies on the biochemistry and pharmacology of low molecular weight heparins. Semin. Thromb. Hemost. 25 (suppl. 3), 27–33 (1999).

    CAS  PubMed  Google Scholar 

  46. Eriksson, B.I. et al. A comparative study of three low-molecular weight heparins (LMWH) and unfractionated heparin (UH) in healthy volunteers. Thromb. Haemost. 73, 398–401 (1995).

    CAS  PubMed  Google Scholar 

  47. Samama, M.M. & Gerotziafas, G.T. Comparative pharmacokinetics of LMWHs. Semin. Thromb. Hemost. 26 (suppl. 1), 31–38 (2000).

    Article  CAS  Google Scholar 

  48. Martel, N., Lee, J. & Wells, P.S. Risk for heparin-induced thrombocytopenia. with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood 106, 2710–2715 (2005).

    Article  CAS  Google Scholar 

  49. Arepally, G.M. & Ortel, T.L. Heparin-induced thrombocytopenia. Annu. Rev. Med. 61, 77–90 (2010).

    Article  CAS  Google Scholar 

  50. Greinacher, A. et al. Heparin-induced thrombocytopenia: a prospective study on the incidence, platelet-activating capacity and clinical significance of antiplatelet factor 4/heparin antibodies of the IgG, IgM, and IgA classes. J. Thromb. Haemost. 5, 1666–1673 (2007).

    Article  CAS  Google Scholar 

  51. Girolami, B. & Girolami, A. Heparin-induced thrombocytopenia: a review. Semin. Thromb. Hemost. 32, 803–809 (2006).

    Article  CAS  Google Scholar 

  52. Selleng, S. et al. Incidence and clinical relevance of anti-platelet factor 4/heparin antibodies before cardiac surgery. Am. Heart J. 160, 362–369 (2010).

    Article  CAS  Google Scholar 

  53. Hursting, M.J. et al. Platelet factor 4/heparin antibodies in blood bank donors. Am. J. Clin. Pathol. 134, 774–780 (2010).

    Article  CAS  Google Scholar 

  54. Newman, P.M., Swanson, R.L. & Chong, B.H. Heparin-induced thrombocytopenia: IgG binding to PF4-heparin complexes in the fluid phase and cross-reactivity with low molecular weight heparin and heparinoid. Thromb. Haemost. 80, 292–297 (1998).

    Article  CAS  Google Scholar 

  55. Greinacher, A., Alban, S., Dummel, V., Franz, G. & Muellereckhardt, C. Characterization of the structural requirements for a carbohydrate-based anticoagulant with a reduced risk of inducing the immunological type of heparin-associated thrombocytopenia. Thromb. Haemost. 74, 886–892 (1995).

    Article  CAS  Google Scholar 

  56. Maccarana, M. & Lindahl, U. Mode of interaction between platelet factor-Iv and heparin. Glycobiology 3, 271–277 (1993).

    Article  CAS  Google Scholar 

  57. Suvarna, S. et al. Determinants of PF4/heparin immunogenicity. Blood 110, 4253–4260 (2007).

    Article  CAS  Google Scholar 

  58. Pattnaik, P. Surface plasmon resonance—applications in understanding receptor-ligand interaction. Appl. Biochem. Biotechnol. 126, 79–92 (2005).

    Article  CAS  Google Scholar 

  59. Kamberi, M. et al. Analysis of non-covalent aggregation of synthetic hPTH (1–34) by size-exclusion chromatography and the importance of suppression of non-specific interactions for a precise quantitation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 810, 151–155 (2004).

    Article  CAS  Google Scholar 

  60. Lebowitz, J., Lewis, M.S. & Schuck, P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067–2079 (2002).

    Article  CAS  Google Scholar 

  61. Levin, S. Field flow fractionation in biomedical analysis. Biomed. Chromatogr. 5, 133–138 (1991).

    Article  CAS  Google Scholar 

  62. Greinacher, A. et al. Close approximation of two platelet factor 4 tetramers by charge neutralization forms the antigens recognized by HIT antibodies. Arterioscler. Thromb. Vasc. Biol. 26, 2386–2393 (2006).

    Article  CAS  Google Scholar 

  63. Rauova, L. et al. Ultralarge complexes of PF4 and heparin are central to the pathogenesis of heparin-induced thrombocytopenia. Blood 105, 131–138 (2005).

    Article  CAS  Google Scholar 

  64. Heinzelmann, M. et al. Heparin and enoxaparin enhance endotoxin-induced tumor necrosis factor-alpha production in human monocytes. Ann. Surg. 229, 542–550 (1999).

    Article  CAS  Google Scholar 

  65. Hochart, H. et al. Concentration-dependent roles for heparin in modifying lipopolysaccharide-induced activation of mononuclear cells in whole blood. Thromb. Haemost. 99, 570–575 (2008).

    Article  CAS  Google Scholar 

  66. Maddineni, J. et al. Product individuality of commercially available low-molecular-weight heparins and their generic versions: therapeutic implications. Clin. Appl. Thromb. Hemost. 12, 267–276 (2006).

    Article  CAS  Google Scholar 

  67. Ofosu, F.A. A review of the two major regulatory pathways for non-proprietary low-molecular-weight heparins. Thromb. Haemost. 107, 201–214 (2012).

    Article  CAS  Google Scholar 

  68. European Medicines Agency. Guideline on non-clinical and clinical development of similar biological medicinal products containing low-molecular-weight heparins, 2013. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/01/WC500138309.pdf (Accessed February 7, 2013).

  69. Harenberg, J. et al. Recommendations on biosimilar low-molecular-weight heparins. J. Thromb. Haemost. 7, 1222–1225 (2009).

    Article  CAS  Google Scholar 

  70. Kalodiki, E. & Leong, W. SASAT (South Asian Society on Atherosclerosis & Thrombosis) proposal for regulatory guidelines for generic low-molecular weight heparins (LMWHs). Clin. Appl. Thromb. Hemost. 15, 8–11 (2009).

    Article  Google Scholar 

  71. Harenberg, J. Differences of present recommendations and guidelines for generic low-molecular-weight heparins: is there room for harmonization. Clin. Appl. Thromb. Hemost. 17, E158–E164 (2011).

    Article  Google Scholar 

  72. Harenberg, J. Overview on guidelines and recommendations for generic low-molecular-weight heparins. Thromb. Res. 127 (suppl. 3), S100–S104 (2011).

    Article  CAS  Google Scholar 

  73. Maccarana, M., Casu, B. & Lindahl, U. Minimal sequence in heparin heparan-sulfate required for binding of basic fibroblast growth-factor. J. Biol. Chem. 269, 3903 (1994).

    CAS  PubMed  Google Scholar 

  74. Cohen, M., Jeske, W.P., Nicolau, J.C., Montalescot, G. & Fareed, J. US Food and Drug Administration approval of generic versions of complex biologics: implications for the practicing physician using low molecular weight heparins. J. Thromb. Thrombolysis 33, 230–238 (2012).

    Article  CAS  Google Scholar 

  75. Garcia-Arieta, A. & Blazquez, A. Regulatory considerations for generic or biosimilar low molecular weight heparins. Curr. Drug Discov. Technol. 9, 137–142 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Raw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Raw, A., Yu, L. et al. Scientific considerations in the review and approval of generic enoxaparin in the United States. Nat Biotechnol 31, 220–226 (2013). https://doi.org/10.1038/nbt.2528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2528

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research