Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA-guided editing of bacterial genomes using CRISPR-Cas systems

Abstract

Here we use the clustered, regularly interspaced, short palindromic repeats (CRISPR)–associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coli. The approach relies on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems. We reprogram dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates. Simultaneous use of two crRNAs enables multiplex mutagenesis. In S. pneumoniae, nearly 100% of cells that were recovered using our approach contained the desired mutation, and in E. coli, 65% that were recovered contained the mutation, when the approach was used in combination with recombineering. We exhaustively analyze dual-RNA:Cas9 target requirements to define the range of targetable sequences and show strategies for editing sites that do not meet these requirements, suggesting the versatility of this technique for bacterial genome engineering.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: dual-RNA:Cas9 nuclease activity against endogenous targets can be exploited for genome editing.
Figure 2: Analysis of PAM and seed sequences that eliminate cleavage by dual-RNA:Cas9.
Figure 3: Introduction of single and multiple mutations using the CRISPR-Cas system in S. pneumoniae.
Figure 4: Mechanisms underlying editing using the CRISPR-Cas system.
Figure 5: Genome editing with the CRISPR-Cas system in E. coli.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S. & Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Bogdanove, A.J. & Voytas, D.F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Stoddard, B.L. Homing endonuclease structure and function. Q. Rev. Biophys. 38, 49–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Bae, T. & Schneewind, O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55, 58–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Sung, C.K., Li, H., Claverys, J.P. & Morrison, D.A. An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl. Environ. Microbiol. 67, 5190–5196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharan, S.K., Thomason, L.C., Kuznetsov, S.G. & Court, D.L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Deveau, H., Garneau, J.E. & Moineau, S. CRISPR-Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64, 475–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Horvath, P. & Barrangou, R. CRISPR-Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Terns, M.P. & Terns, R.M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M. & Brouns, S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carte, J., Wang, R., Li, H., Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hatoum-Aslan, A., Maniv, I. & Marraffini, L.A. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc. Natl. Acad. Sci. USA 108, 21218–21222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J.A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Makarova, K.S., Aravind, L., Wolf, Y.I. & Koonin, E.V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6, 38 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barrangou, R. RNA-mediated programmable DNA cleavage. Nat. Biotechnol. 30, 836–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Brouns, S.J. Molecular biology. A Swiss army knife of immunity. Science 337, 808–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Carroll, D. A CRISPR approach to gene targeting. Mol. Ther. 20, 1658–1660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffini, L.A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12, 177–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR-Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275–9282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108, 10098–10103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci. USA 108, 10092–10097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zahner, D. & Hakenbeck, R. The Streptococcus pneumoniae beta-galactosidase is a surface protein. J. Bacteriol. 182, 5919–5921 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marraffini, L.A., Dedent, A.C. & Schneewind, O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol. Mol. Biol. Rev. 70, 192–221 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Motamedi, M.R., Szigety, S.K. & Rosenberg, S.M. Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev. 13, 2889–2903 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hosaka, T. et al. The novel mutation K87E in ribosomal protein S12 enhances protein synthesis activity during the late growth phase in Escherichia coli. Mol. Genet. Genomics 271, 317–324 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Costantino, N. & Court, D.L. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc. Natl. Acad. Sci. USA 100, 15748–15753 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edgar, R. & Qimron, U. The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J. Bacteriol. 192, 6291–6294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marraffini, L.A. & Sontheimer, E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer, S. et al. An archaeal immune system can detect multiple Protospacer Adjacent Motifs (PAMs) to target invader DNA. J. Biol. Chem. 287, 33351–33363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gudbergsdottir, S. et al. Dynamic properties of the Sulfolobus CRISPR-Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol. Microbiol. 79, 35–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, H.H. et al. Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9, 591–593 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cong, L. et al. Multiplex genome engineering using CRISPR-Cas systems. Science doi:10.1126/science.1231143 (3 January 2013).

  38. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science doi:10.1126/science.1232033 (3 January 2013).

  39. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. advance online publication, doi:10.1038/nbt.2507 (29 January 2013).

  40. Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. advance online publication, doi:10.1038/nbt.2501 (29 January 2013).

  41. Hoskins, J. et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183, 5709–5717 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Havarstein, L.S., Coomaraswamy, G. & Morrison, D.A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92, 11140–11144 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horinouchi, S. & Weisblum, B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 150, 815–825 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Horton, R.M. In vitro recombination and mutagenesis of DNA: SOEing Together tailor-made genes. Methods Mol. Biol. 15, 251–261 (1993).

    CAS  PubMed  Google Scholar 

  45. Podbielski, A., Spellerberg, B., Woischnik, M., Pohl, B. & Lutticken, R. Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS). Gene 177, 137–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Husmann, L.K., Scott, J.R., Lindahl, G. & Stenberg, L. Expression of the Arp protein, a member of the M protein family, is not sufficient to inhibit phagocytosis of Streptococcus pyogenes. Infect. Immun. 63, 345–348 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Fischetti and C. Euler for plasmid pLZ12spec, D. Court for the HME63 strain, J. Kern for plasmid pKD46, the Rockefeller University Genomic Resource Center for technical support and J. Roberts for the MG1655 strain. D.B. is supported by a Harvey L. Karp Discovery Award and the Bettencourt Schuller Foundation. D.C. is supported by the Medical Scientist Training Program. F.Z. is supported by a US National Institutes of Health (NIH) Director's Pioneer Award (DP1MH100706), Transformative R01, the Keck, McKnight, Gates, Damon Runyon, Searle Scholars, Klingenstein, and Simons Foundations, Bob Metcalfe, Mike Boylan and Jane Pauley. L.A.M. is supported by the Searle Scholars Program, the Rita Allen Scholars Program, a Irma T. Hirschl Award and a NIH Director's New Innovator Award (1DP2AI104556-01).

Author information

Authors and Affiliations

Authors

Contributions

W.J., D.B. and L.A.M. designed the experiments; W.J., D.B. and D.C. performed experiments; W.J., D.B., F.Z. and L.A.M. wrote the paper.

Corresponding authors

Correspondence to David Bikard or Luciano A Marraffini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Discussion, Supplementary Figures 1–11 and Supplementary Tables 1–3 (PDF 2790 kb)

Supplementary Data

Supplementary Data (XLSX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233–239 (2013). https://doi.org/10.1038/nbt.2508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing