Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data

Abstract

Mammalian RNA complexity is regulated through interactions of RNA-binding proteins (RBPs) with their target transcripts. High-throughput sequencing together with UV-crosslinking and immunoprecipitation (HITS-CLIP) is able to globally map RBP-binding footprint regions at a resolution of 30-60 nucleotides. Here we describe a systematic way to analyze HITS-CLIP data to identify exact crosslink sites, and thereby determine protein-RNA interactions at single-nucleotide resolution. We found that reverse transcriptase used in CLIP frequently skips the crosslinked amino-acid-RNA adduct, resulting in a nucleotide deletion. Genome-wide analysis of these crosslinking-induced mutation sites (CIMS) in HITS-CLIP data for Nova and Argonaute (Ago) proteins in mouse brain tissue revealed deletions in 8–20% of mRNA tags, which mapped to Nova and Ago binding sites on mRNA or miRNA. CIMS analysis provides a general and more precise means of mapping protein-RNA interactions than currently available methods and insight into the biochemical properties of such interactions in living tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of CIMS analysis.
Figure 2: Crosslinking induces deletions, but not substitutions, that precisely map Nova-mRNA interactions.
Figure 3: Frequency of CIMS in CLIP tag clusters and association of CIMS with Nova-regulated alternative exons.
Figure 4: CIMS analysis refines the Nova binding motif.
Figure 5: Crosslinking induces deletions, but not substitutions, that precisely map Ago-mRNA and Ago-miRNA interaction sites.

Similar content being viewed by others

References

  1. Nilsen, T.W. & Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Licatalosi, D.D. & Darnell, R.B. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11, 75–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dredge, B.K. & Darnell, R.B. Nova regulates GABAA receptor γ2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Mol. Cell. Biol. 23, 4687–4700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dredge, B.K., Stefani, G., Engelhard, C.C. & Darnell, R.B. Nova autoregulation reveals dual functions in neuronal splicing. EMBO J. 24, 1608–1620 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilson, D.S. & Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Tacke, R. & Manley, J.L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14, 3540–3551 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perez, I., Lin, C.H., McAfee, J.G. & Patton, J.G. Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA 3, 764–778 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Burd, C.G. & Dreyfuss, G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high- affinity binding sites in pre-mRNA splicing. EMBO J. 13, 1197–1204 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, Y.Y.L., Yin, G.L. & Darnell, R.B. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc. Natl. Acad. Sci. USA 95, 13254–13259 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buckanovich, R.J. & Darnell, R.B. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol. Cell. Biol. 17, 3194–3201 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ponthier, J.L. et al. Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. J. Biol. Chem. 281, 12468–12474 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Jin, Y. et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22, 905–912 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galarneau, A. & Richard, S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat. Struct. Mol. Biol. 12, 691–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Keene, J.D., Komisarow, J.M. & Friedersdorf, M.B. RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat. Protoc. 1, 302–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, C. et al. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev. 22, 2550–2563 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ule, J., Jensen, K., Mele, A. & Darnell, R.B. CLIP: A method for identifying protein-RNA interaction sites in living cells. Methods 37, 376–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chi, S.W., Zang, J.B., Mele, A. & Darnell, R.B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Darnell, R.B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev. RNA 1, 266–286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R.B. Nova2 regulates neuronal migration through an RNA switch in Disabled-1 signaling. Neuron 66, 848–858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, C. et al. Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329, 439–443 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanford, J.R. et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 19, 381–394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yeo, G.W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xue, Y. et al. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell 36, 996–1006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zisoulis, D.G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 17, 173–179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leung, A.K.L. et al. Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat. Struct. Mol. Biol. 18, 237–244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hua, Y. et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 24, 1634–1644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coady, T.H. & Lorson, C.L. Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy. J. Neurosci. 30, 126–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang, Z. et al. iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol. 8, e1000530 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tollervey, J.R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Urlaub, H., Hartmuth, K. & Lurmann, R. A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods 26, 170–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Granneman, S., Petfalski, E., Swiatkowska, A. & Tollervey, D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J. 29, 2026–2036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Granneman, S., Kudla, G., Petfalski, E. & Tollervey, D. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc. Natl. Acad. Sci. USA 106, 9613–9618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bohnsack, M.T. et al. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol. Cell 36, 583–592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albert, M.L. & Darnell, R.B. Paraneoplastic neurological degenerations: keys to tumour immunity. Nat. Rev. Cancer 4, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Ule, J. & Darnell, R.B. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr. Opin. Neurobiol. 16, 102–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Lewis, H.A. et al. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 100, 323–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frith, M.C., Saunders, N.F.W., Kobe, B. & Bailey, T.L. Discovering sequence motifs with arbitrary insertions and deletions. PLOS Comput. Biol. 4, e1000071 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hockensmith, J.W., Kubasek, W.L., Vorachek, W.R. & von Hippel, P.H. Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system. J. Biol. Chem. 261, 3512–3518 (1986).

    CAS  PubMed  Google Scholar 

  47. Fecko, C.J. et al. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking. Photochem. Photobiol. 83, 1394–1404 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lozzio, C.B. & Wigler, P.W. Cytotoxic effects of thiopyrimidines. J. Cell. Physiol. 78, 25–31 (1971).

    Article  CAS  PubMed  Google Scholar 

  50. Yasukawa, K., Nemoto, D. & Inouye, K. Comparison of the thermal stabilities of reverse transcriptases from avian myeloblastosis virus and Moloney murine leukaemia virus. J. Biochem. 143, 261–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Kent, W.J. BLAT—The BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Rhead, B. et al. The UCSC Genome Browser database: update 2010. Nucleic Acids Res. 38, D613–D619 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Bailey, T. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Ule and all Darnell laboratory members for helpful discussion, and M.A. Frias, J. Luna, C.B. Marney and Y. Yuan for critical reading of the manuscript. This work was supported by grants from the National Institutes of Health (NS34389 to R.B.D. and K99GM95713 to C.Z.), and the Rockefeller University Hospital CTSA (UL1 RR024143). R.B.D. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and R.B.D. conceived and designed the study; C.Z. performed the research; C.Z. and R.B.D. analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Chaolin Zhang or Robert B Darnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 5 and Supplementary Figures 1–6 (PDF 543 kb)

Supplementary Table 2

List of Nova CIMS (FDR ≤ 0.001) (XLS 2925 kb)

Supplementary Table 3

Summary of CIMS in Nova target cassette exons (XLS 72 kb)

Supplementary Table 4

List of Ago mRNA CIMS (FDR ≤ 0.001) (XLS 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Darnell, R. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29, 607–614 (2011). https://doi.org/10.1038/nbt.1873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1873

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research