Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measured proton electromagnetic structure deviates from theoretical predictions

Abstract

The visible world is founded on the proton, the only composite building block of matter that is stable in nature. Consequently, understanding the formation of matter relies on explaining the dynamics and the properties of the proton’s bound state. A fundamental property of the proton involves the response of the system to an external electromagnetic field. It is characterized by the electromagnetic polarizabilities1 that describe how easily the charge and magnetization distributions inside the system are distorted by the electromagnetic field. Moreover, the generalized polarizabilities2 map out the resulting deformation of the densities in a proton subject to an electromagnetic field. They disclose essential information about the underlying system dynamics and provide a key for decoding the proton structure in terms of the theory of the strong interaction that binds its elementary quark and gluon constituents. Of particular interest is a puzzle in the electric generalized polarizability of the proton that remains unresolved for two decades2. Here we report measurements of the proton’s electromagnetic generalized polarizabilities at low four-momentum transfer squared. We show evidence of an anomaly to the behaviour of the proton’s electric generalized polarizability that contradicts the predictions of nuclear theory and derive its signature in the spatial distribution of the induced polarization in the proton. The reported measurements suggest the presence of a new, not-yet-understood dynamical mechanism in the proton and present notable challenges to the nuclear theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Using virtual Compton scattering to measure the proton generalized polarizabilities.
Fig. 2: Feynman diagrams of photon electroproduction.
Fig. 3: Cross-section measurements of the VCS reaction.
Fig. 4: The generalized polarizabilities of the proton.

Similar content being viewed by others

Data availability

The raw data from the experiment are archived in Jefferson Laboratory’s mass storage silo and at Temple University, Department of Physics. The filtered data are archived at Temple University. The data are available from the authors on request.

Code availability

The data analysis uses the standard C++ ROOT framework, which was developed at CERN and is freely available at https://root.cern.ch. The simulation of the experiment was generated with the Jefferson Lab simulation code SIMC. The DR fit was done using the DR code developed by B. Pasquini14,15,16. The computer codes used for the data analysis are available on request.

References

  1. Zyla, P. A. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

    Article  CAS  Google Scholar 

  2. Fonvieille, H., Pasquini, B. & Sparveris, N. Virtual Compton scattering and nucleon generalized polarizabilities. Prog. Part. Nucl. Phys. 113, 103754 (2020).

    Article  CAS  Google Scholar 

  3. Wilson, K. G. Confinement of quarks. Phys. Rev. D 10, 2445 (1974).

    Article  CAS  ADS  Google Scholar 

  4. Weinberg, S. Nuclear forces from chiral lagrangians. Phys. Lett. B 251, 288–292 (1990).

    Article  CAS  ADS  Google Scholar 

  5. Weinberg, S. Effective chiral lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B 363, 3–18 (1991).

    Article  ADS  Google Scholar 

  6. Weinberg, S. Three-body interactions among nucleons and pions. Phys. Lett. B 295, 114–121 (1992).

    Article  CAS  ADS  Google Scholar 

  7. Pasquini, B. & Vanderhaeghen, M. Dispersion theory in electromagnetic interactions. Annu. Rev. Nucl. Part. Sci. 68, 75–103 (2018).

    Article  CAS  ADS  Google Scholar 

  8. Roche, J. et al. First determination of generalized polarizabilities of the proton by a virtual Compton scattering experiment. Phys. Rev. Lett. 85, 708–711 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Janssens, P. et al. A new measurement of the structure functions PLL - PTT/ε and PLT in virtual Compton scattering at Q2 = 0.33 (GeV/c)2. Eur. Phys. J. A37, 1–8 (2008).

    Article  ADS  Google Scholar 

  10. Beričič, J. et al. New insight in the Q2 dependence of proton generalized polarizabilities. Phys. Rev. Lett. 123, 192302 (2019).

    Article  PubMed  ADS  Google Scholar 

  11. Fonvieille, H. et al. Measurement of the generalized polarizabilities of the proton at intermediate Q2. Phys. Rev. C 103, 025205 (2021).

    Article  CAS  ADS  Google Scholar 

  12. Laveissiere, G. et al. Measurement of the generalized polarizabilities of the proton in virtual Compton scattering at Q2 = 0.92 and 1.76 GeV2. Phys. Rev. Lett. 93, 122001 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Fonvieille, H. et al. Virtual Compton scattering and the generalized polarizabilities of the proton at Q2 = 0.92 and 1.76 GeV2. Phys. Rev. C 86, 015210 (2012).

    Article  ADS  Google Scholar 

  14. Pasquini, B., Drechsel, D., Gorchtein, M., Metz, A. & Vanderhaeghen, M. Dispersion relation formalism for virtual Compton scattering and the generalized polarizabilities of the nucleon. Phys. Rev. C 62, 052201(R) (2000).

    Article  ADS  Google Scholar 

  15. Pasquini, B., Gorchtein, M., Drechsel, D., Metz, A. & Vanderhaeghen, M. Dispersion relation formalism for virtual Compton scattering off the proton. Eur. Phys. J. A 11, 185–208 (2001).

    Article  CAS  ADS  Google Scholar 

  16. Drechsel, D., Pasquini, B. & Vanderhaeghen, M. Dispersion relations in real and virtual Compton scattering. Phys. Rep. 378, 99–205 (2003).

    Article  CAS  ADS  Google Scholar 

  17. Lensky, V., Pascalutsa, V. & Vanderhaeghen, M. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory. Eur. Phys. J. C 77, 119 (2017).

    Article  ADS  Google Scholar 

  18. Hemmert, T. R., Holstein, B., Knochlein, G. & Scherer, S. Virtual Compton scattering off the nucleon in chiral perturbation theory. Phys. Rev. D 55, 2630 (1997).

    Article  CAS  ADS  Google Scholar 

  19. Hemmert, T. R., Holstein, B., Knochlein, G. & Scherer, S. Generalized polarizabilities and the chiral structure of the nucleon. Phys. Rev. Lett. 79, 22 (1997).

    Article  CAS  ADS  Google Scholar 

  20. Hemmert, T. R., Holstein, B., Knochlein, G. & Drechsel, D. Generalized polarizabilities of the nucleon in chiral effective theories. Phys. Rev. D 62, 014013 (2000).

    Article  ADS  Google Scholar 

  21. Kao, C. W. & Vanderhaeghen, M. Generalized spin polarizabilities of the nucleon in heavy baryon chiral perturbation theory at next-to-leading order. Phys. Rev. Lett. 89, 272002 (2002).

    Article  PubMed  ADS  Google Scholar 

  22. Kao, C. W., Pasquini, B. & Vanderhaeghen, M. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory. Phys. Rev. D 92, 119906 (2015).

    Article  ADS  Google Scholar 

  23. Metz, A. & Drechsel, D. Generalized polarizabilities of the nucleon studied in the linear sigma model. Z. Phys. A 356, 351–357 (1996).

    Article  CAS  ADS  Google Scholar 

  24. Metz, A. & Drechsel, D. Generalized polarizabilities of the nucleon studied in the linear sigma model (II). Z. Phys. A 359, 165–172 (1997).

    Article  CAS  ADS  Google Scholar 

  25. Korchin, A. & Scholten, O. Nucleon polarizabilities in virtual Compton scattering. Phys. Rev. C 58, 1098 (1998).

    Article  CAS  ADS  Google Scholar 

  26. Pasquini, B. & Salme, G. Nucleon generalized polarizabilities within a relativistic constituent quark model. Phys. Rev. C 57, 2589 (1998).

    Article  CAS  ADS  Google Scholar 

  27. Liu, G. Q., Thomas, A. W. & Guichon, P. A. M. Virtual Compton scattering from the proton and the properties of nucleon excited states. Aust. J. Phys. 49, 905–918 (1996).

    Article  CAS  ADS  Google Scholar 

  28. Pasquini, B., Scherer, S. & Drechsel, D. Generalized polarizabilities of the proton in a constituent quark model revisited. Phys. Rev. C 63, 025205 (2001).

    Article  ADS  Google Scholar 

  29. Gorchtein, M., Lorce, C., Pasquini, B. & Vanderhaeghen, M. Light-front interpretation of proton generalized polarizabilities. Phys. Rev. Lett. 104, 112001 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Atac, H. et al. Measurement of the neutron charge radius and the role of its constituents. Nat. Commun. 12, 1759 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Mornacchi, E. et al. Measurement of Compton scattering at MAMI for the extraction of the electric and magnetic polarizabilities of the proton. Phys. Rev. Lett. 128, 132503 (2022).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  32. Zheng, X. et al. Measurement of the proton spin structure at long distances. Nat. Phys. 17, 736–741 (2021).

    Article  CAS  Google Scholar 

  33. Sulkosky, V. et al. Measurement of the generalized spin polarizabilities of the neutron in the low-Q2 region. Nat. Phys. 17, 687–692 (2021).

    Article  CAS  Google Scholar 

  34. Ahmed, M. W. et al. Nucleon spins surprise. Nat. Phys. 17, 670–671 (2021).

    Article  CAS  Google Scholar 

  35. Mkrtchyan, H. et al. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab. Nucl. Instrum. Methods A 719, 85–100 (2013).

    Article  CAS  ADS  Google Scholar 

  36. Vanderhaeghen, M. et al. QED radiative corrections to virtual Compton scattering. Phys. Rev. C 62, 025501 (2000).

    Article  ADS  Google Scholar 

  37. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).

  38. Guichon, P., Liu, G. & Thomas, A. W. Virtual Compton scattering and generalized polarizabilities of the proton. Nucl. Phys. A 591, 606–638 (1995).

    Article  ADS  Google Scholar 

  39. Bernauer, J. C. et al. High-precision determination of the electric and magnetic form factors of the proton. Phys. Rev. Lett. 105, 242001 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Atac, H. et al. Charge radii of the nucleon from its flavor dependent Dirac form factors. Eur. Phys. J. A 57, 65 (2021).

    Article  CAS  ADS  Google Scholar 

  41. Bourgeois, P. et al. Measurements of the generalized electric and magnetic polarizabilities of the proton at low Q2 using the virtual Compton scattering reaction. Phys. Rev. C 84, 035206 (2011).

    Article  ADS  Google Scholar 

  42. Bourgeois, P. et al. Measurements of the generalized electric and magnetic polarizabilities of the proton at low Q2 using the VCS reaction. Phys. Rev. Lett. 97, 212001 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Blomberg, A. et al. Virtual Compton scattering measurements in the nucleon resonance region. Eur. Phys. J. A 55, 182 (2019).

    Article  CAS  ADS  Google Scholar 

  44. Pohl, R. et al. The size of the proton. Nature 466, 213–216 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Antognini, A. et al. Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen. Science 339, 417–420 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Xiong, W. et al. A small proton charge radius from an electron–proton scattering experiment. Nature 575, 147–150 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Fleurbaey, H. et al. New measurement of the 1S-3S transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 182001 (2018).

    Article  Google Scholar 

  48. Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007–1012 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Grinin, A. et al. Two-photon frequency comb spectroscopy of atomic hydrogen. Science 370, 1061–1066 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

WE would like to thank M. Vanderhaeghen, as this work greatly benefitted from his input and suggestions. This work has been supported by the US Department of Energy Office of Science, Office of Nuclear Physics under contract nos. DE-SC0016577 and DE-AC05-06OR23177.

Author information

Authors and Affiliations

Authors

Contributions

N.S. is the spokesperson of the experiment. He initiated, guided and supervised this effort. R.L worked on the data analysis and the extraction of the cross sections and generalized polarizabilities. H.A. worked on the data analysis and the extraction of the electric and magnetic polarizability radii. M.K.J. and M.P. co-supervised the data analysis efforts and worked on the simulation of the experiment. B.P. developed the DR code for VCS and produced the induced polarization density. The entire VCS collaboration participated in the data collection and online analysis of the experiment.

Corresponding author

Correspondence to N. Sparveris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Cross-section measurements of the VCS reaction for out-of-plane kinematics.

a, Cross-section measurements for out-of-plane kinematics at Q2 = 0.28 GeV2. Results are shown for different bins in the total centre-of-mass energy of the (γp) system, W. Top, middle and bottom panels correspond to ϕγ*γ = 140°, ϕγ*γ = 28° and ϕγ*γ = 38°, respectively. b, Measurements for out-of-plane kinematics at Q2 = 0.33 GeV2. Top and bottom panels correspond to ϕγ*γ = 150° and ϕγ*γ = 30°, respectively. c, Measurements for out-of-plane kinematics at Q2 = 0.40 GeV2. Top, middle and bottom panels correspond to ϕγ*γ = 152°, ϕγ*γ = 35° and ϕγ*γ = 50°, respectively. The solid curve shows the DR fit for the two scalar generalized polarizabilities. The dashed curve shows the Bethe–Heitler plus Born VCS (BH+Born) cross section. The error bars correspond to the total uncertainty, at the 1σ or 68% confidence level.

Extended Data Fig. 2 Q2 dependence of the electric generalized polarizability.

a, The empirical fits to the electric generalized polarizability: the yellow band corresponds to a dipole fit (\({\chi }_{\nu }^{2}=3.7\)) and the purple band corresponds to the dipole + Gaussian fit (\({\chi }_{\nu }^{2}=1.9\)). The world data values for the electric generalized polarizability (open symbols) from the experiments MIT-Bates, MAMI-I, MAMI-IV, MAMI-V, MAMI-VI and JLab-I are summarized in the review paper of ref. 2. b, The Q2 dependence of the electric generalized polarizability as derived from the experimental measurements using the GPR technique, a data-driven method that assumes no direct underlying functional form. The error bars and the uncertainty bands correspond to the total uncertainty, at the 1σ or 68% confidence level.

Extended Data Fig. 3 Electric polarizability radius fits.

Top, the mean square electric polarizability radius fits using combinations of different functional forms (exp, gaus, pol and dipole correspond to exponential, Gaussian, polynomial and dipole functions, respectively). The fits denoted with solid lines were performed over the full Q2 range of the world data. The three functional forms denoted with dashed lines were performed in the low-Q2 range, namely in Q2 = [0, 0.28] GeV2. Bottom, the extracted mean square electric polarizability radius from the individual fits. The error bars correspond to the total uncertainty, at the 1σ or 68% confidence level. The blue band marks the final value for the extracted \(\langle {r}_{{\alpha }_{{\rm{E}}}}^{2}\rangle =1.36\pm 0.29\,{{\rm{fm}}}^{2}\).

Extended Data Fig. 4 Electric polarizability radius.

The electric polarizability radius \({r}_{{\alpha }_{{\rm{E}}}}\equiv \sqrt{\langle {r}_{{\alpha }_{{\rm{E}}}}^{2}\rangle }\) derived from this work is compared with the previous extractions of this quantity (open red symbols). The theoretical predictions of the models discussed in the paper are also shown as red triangles. The recent measurements of the proton charge radius rE (blue symbols) are also shown. The error bars correspond to the total uncertainty,at the 1σ or 68% confidence level.

Extended Data Fig. 5 Magnetic polarizability radius fits.

Top, the mean square magnetic polarizability radius fits using combinations of different functional forms (exp, pol and dipole correspond to exponential, polynomial and dipole functions, respectively). Bottom, the extracted mean square magnetic polarizability radius from the individual fits. The error bars correspond to the total uncertainty, at the 1σ or 68% confidence level. The blue band marks the final value for the extracted \(\langle {r}_{{\beta }_{{\rm{M}}}}^{2}\rangle =0.63\pm 0.31\,{{\rm{fm}}}^{2}\).

Extended Data Table 1 Cross section results at Q2 = 0.28 GeV2
Extended Data Table 2 Cross-section results at Q2 = 0.33 GeV2
Extended Data Table 3 Cross-section results at Q2 = 0.40 GeV2
Extended Data Table 4 The electric and magnetic generalized polarizabilities

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Sparveris, N., Atac, H. et al. Measured proton electromagnetic structure deviates from theoretical predictions. Nature 611, 265–270 (2022). https://doi.org/10.1038/s41586-022-05248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05248-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing