Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Free-space dissemination of time and frequency with 10−19 instability over 113 km

Abstract

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the ‘second’3,4,5,6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10−19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10−19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time–frequency dissemination with an offset of 6.3 × 10−20 ± 3.4 × 10−19 and an instability of less than 4 × 10−19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time–frequency dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The experimental setup.
Fig. 2: Characterization of the 113 km free-space link.
Fig. 3: Experimental results of time–frequency transfer.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Code availability

All relevant codes or algorithms are available from the corresponding author upon reasonable request.

References

  1. Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).

    Article  ADS  PubMed  Google Scholar 

  2. Lisdat, C. et al. A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Riehle, F., Gill, P., Arias, F. & Robertsson, L. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia 55, 188–200 (2018).

    Article  ADS  CAS  Google Scholar 

  4. Riehle, F. Towards a redefinition of the second based on optical atomic clocks. C. R. Phys. 16, 506–515 (2015).

    Article  CAS  Google Scholar 

  5. McGrew, W. F. et al. Towards the optical second: verifying optical clocks at the SI limit. Optica 6, 448 (2019).

    Article  ADS  CAS  Google Scholar 

  6. Bize, S. The unit of time: present and future directions. C. R. Phys. 20, 153–168 (2019).

    Article  ADS  CAS  Google Scholar 

  7. Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    Article  ADS  Google Scholar 

  8. Campbell, S. L. et al. A fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. McGrew, W. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Deschênes, J.-D. et al. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X 6, 021016 (2016).

    Google Scholar 

  11. Sinclair, L. C. et al. Synchronization of clocks through 12 km of strongly turbulent air over a city. Appl. Phys. Lett. 109, 151104 (2016).

    Article  ADS  PubMed  Google Scholar 

  12. Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).

    Article  CAS  Google Scholar 

  13. Delva, P. et al. Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett. 118, 221102 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Chin, C., Flambaum, V. V. & Kozlov, M. G. Ultracold molecules: new probes on the variation of fundamental constants. New J. Phys. 11, 055048 (2009).

    Article  ADS  Google Scholar 

  16. Roberts, B. M. et al. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks. New J. Phys. 22, 093010 (2020).

    Article  ADS  CAS  Google Scholar 

  17. Liu, Y. et al. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Droste, S. et al. Optical-frequency transfer over a single-span 1840 km fiber link. Phys. Rev. Lett. 111, 110801 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Predehl, K. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336, 441–444 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Cantin, E. et al. An accurate and robust metrological network for coherent optical frequency dissemination. New J. Phys. 23, 053027 (2021).

    Article  ADS  CAS  Google Scholar 

  21. Katori, H. Optical lattice clocks and quantum metrology. Nat. Photonics 5, 203 (2011).

    Article  ADS  CAS  Google Scholar 

  22. Giorgetta, F. R. et al. Optical two-way time and frequency transfer over free space. Nat. Photonics 7, 434 (2013).

    Article  ADS  CAS  Google Scholar 

  23. Bodine, M. I. et al. Optical time-frequency transfer across a free-space, three-node network. APL Photonics 5, 076113 (2020).

    Article  ADS  CAS  Google Scholar 

  24. Shen, Q. et al. Experimental simulation of time and frequency transfer via an optical satellite-ground link at 10 -18 instability. Optica 8, 471 (2021).

    Article  ADS  Google Scholar 

  25. Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2, 33395 (2020).

    Article  CAS  Google Scholar 

  26. Beloy, K. et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).

    Article  ADS  Google Scholar 

  27. Bergeron, H. et al. Femtosecond time synchronization of optical clocks off of a flying quadcopter. Nat. Commun. 10, 1819 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Sinclair, L. C. et al. Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency. Phys. Rev. Lett. 120, 050801 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Gozzard, D. R. et al. Ultrastable free-space laser links for a global network of optical atomic clocks. Phys. Rev. Lett. 128, 020801 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Samain, E. et al. Time transfer by laser link: a complete analysis of the uncertainty budget. Metrologia 52, 423–432 (2015).

    Article  ADS  Google Scholar 

  31. Cacciapuoti, L. & Schiller, S. I-SOC Scientific Requirements Technical Report (European Space Research and Technology Centre, 2017).

  32. Exertier, P. et al. Time and laser ranging: a window of opportunity for geodesy, navigation, and metrology. J. Geod. 93, 2389–2404 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Robert, C., Conan, J.-M. & Wolf, P. Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links. Phys. Rev. A 93, 033860 (2016).

    Article  ADS  Google Scholar 

  34. Swann, W. C. et al. Measurement of the impact of turbulence anisoplanatism on precision free-space optical time transfer. Phys. Rev. A 99, 023855 (2019).

    Article  ADS  CAS  Google Scholar 

  35. Strohbehn, J. W. (ed.) Laser Beam Propagation in the Atmosphere Topics in Applied Physics Vol. 25 (Springer, 1978); https://doi.org/10.1007/3-540-08812-1

  36. Conan, J.-M., Rousset, G. & Madec, P.-Y. Wave-front temporal spectra in high-resolution imaging through turbulence. J. Opt. Soc. Am. A 12, 1559–1570 (1995).

    Article  ADS  Google Scholar 

  37. Bauch, A. et al. Comparison between frequency standards in europe and the usa at the 10−15 uncertainty level. Metrologia 43, 109–120 (2006).

    Article  ADS  Google Scholar 

  38. Fujieda, M. et al. Advanced satellite-based frequency transfer at the 10−16 level. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 973–978 (2018).

  39. Schioppo, M. et al. Ultrastable optical clock with two cold-atom ensembles. Nat. Photonics 11, 48–52 (2017).

    Article  ADS  CAS  Google Scholar 

  40. Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 13, 714–719 (2019).

  41. Calosso, C. E., Clivati, C. & Micalizio, S. Avoiding aliasing in allan variance: an application to fiber link data analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 646–655 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Programme of China (grant nos. 2017YFA0303900, 2020YFA0309800 and 2020YFC2200103); the Strategic Priority Research Programme of Chinese Academy of Sciences (grant nos. XDB35030000 and XDA15020400); the National Natural Science Foundation of China (grant nos. T2125010 and 61825505); the Anhui Initiative in Quantum Information Technologies (grant no. AHY010100); the Key R&D Plan of Shandong Province (grant nos. 2020CXGC010105 and 2021ZDPT01); the Key Research and Development Programme of Guangdong Province (grant no. 2018B030325001); the Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX01); and the Innovation Programme for Quantum Science and Technology (grant no. 2021ZD0300100).

Author information

Authors and Affiliations

Authors

Contributions

H.-F.J., Q.Z. and J.-W.P. conceived the experiment. Q.S., J.-Y.G., L.H., M.L., J.-J.H., M.-Z.L., Y.-W.C., X.-X.P., H.-F.J. and Q.Z. designed the time and frequency setup. J.-G.R., Y.C., T.Z., J.-C.W., J.-J.J., J.Y. and C.-Z.P. built the optical telescopes. L.H., X.-X.P., Y.-Y.Z. and H.-F.J. developed the 1,563 nm OFCs and amplifiers. Q.S., M.L., J.-Y.G., J.-J.H., M.-Z.L. and S.-K.L. developed the LOS optics and electrics and the real-time synchronization modules. J.-Y.G., F.-X.C., H.-F.J., Q.S., J.-J.H. and M.-Z.L. developed the optical fibre transfer link. W.-Y.L., X.-P.S., Y.L., M.L., Q.S. and J.-Y.G. designed the data acquisition software of the LOS. J.-Y.G., Q.S., M.L., J.-J.H., M.-Z.L. and Y.-W.C. designed the time data process software. All authors carried out the experiment, analysed the data and contributed to the writing of the paper.

Corresponding authors

Correspondence to Hai-Feng Jiang, Qiang Zhang or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Detailed experimental optics setup of single terminal.

USL, ultra-stable laser; EDFA, erbium-doped fiber amplifiers; Cir, circulator; BPD, balanced photodiode; Tele, Telescope.

Extended Data Fig. 2 Setup for fibre time-frequency transfer.

USL, ultra-stable laser; SMC, single-mode coupler; PD, photon diode; RF, radio frequency source; FM, Faraday mirror; AOM, acoustic optical modulator; EPC, electric polarization controller; Bi-EDFA, bidirectional erbium doped fiber amplification.Underlying map from Google, DigitalGlobe.

Extended Data Table 1 Detailed parameters of the experiment

Supplementary information

Supplementary Information

Supplementary text and figures.

Peer Review File

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., Guan, JY., Ren, JG. et al. Free-space dissemination of time and frequency with 10−19 instability over 113 km. Nature 610, 661–666 (2022). https://doi.org/10.1038/s41586-022-05228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05228-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing