Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxygen isotopes trace the origins of Earth’s earliest continental crust

Abstract

Much of the current volume of Earth’s continental crust had formed by the end of the Archaean eon1 (2.5 billion years ago), through melting of hydrated basaltic rocks at depths of approximately 25–50 kilometres, forming sodic granites of the tonalite–trondhjemite–granodiorite (TTG) suite2,3,4,5,6. However, the geodynamic setting and processes involved are debated, with fundamental questions arising, such as how and from where the required water was added to deep-crustal TTG source regions7,8. In addition, there have been no reports of voluminous, homogeneous, basaltic sequences in preserved Archaean crust that are enriched enough in incompatible trace elements to be viable TTG sources5,9. Here we use variations in the oxygen isotope composition of zircon, coupled with whole-rock geochemistry, to identify two distinct groups of TTG. Strongly sodic TTGs represent the most-primitive magmas and contain zircon with oxygen isotope compositions that reflect source rocks that had been hydrated by primordial mantle-derived water. These primitive TTGs do not require a source highly enriched in incompatible trace elements, as ‘average’ TTG does. By contrast, less sodic ‘evolved’ TTGs require a source that is enriched in both water derived from the hydrosphere and also incompatible trace elements, which are linked to the introduction of hydrated magmas (sanukitoids) formed by melting of metasomatized mantle lithosphere. By concentrating on data from the Palaeoarchaean crust of the Pilbara Craton, we can discount a subduction setting6,10,11,12,13, and instead propose that hydrated and enriched near-surface basaltic rocks were introduced into the mantle through density-driven convective overturn of the crust. These results remove many of the paradoxical impediments to understanding early continental crust formation. Our work suggests that sufficient primordial water was already present in Earth’s early mafic crust to produce the primitive nuclei of the continents, with additional hydrated sources created through dynamic processes that are unique to the early Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compositional variation in granites of the Archaean Pilbara Craton.
Fig. 2: Oxygen isotope compositions of Pilbara and Yilgarn granites.
Fig. 3: Incompatible trace-element modelling of TTG source.
Fig. 4: Forming Earth’s early felsic crust.

Similar content being viewed by others

Data availability

Oxygen isotope data for this study were collected on 39 samples and data on two other samples were taken from ref. 22 (sample OGC; GSWA sample 178035) and ref. 53 (sample 142661). All sample details, oxygen isotope and U–Pb age data from these samples are presented in Extended Data Tables 1, 2 (and Supplementary Tables 13) and whole-rock geochemical data are presented in Supplementary Table 4. Raw data relating to U–Pb age determinations can be downloaded from ref. 57. Whole-rock geochemistry data for Pilbara and Yilgarn sanukitoids are from refs. 36,44, respectively. Data used to calculate average compositions of Pilbara basalts are from ref. 56. Data in refs. 36,44,56 can also be downloaded, using sample numbers provided as Supplementary Table 6, from the Geological Survey of Western Australia’s WACHEM database (http://geochem.dmp.wa.gov.au/geochem/) using the GeoChem Extract tool and selecting the ‘Whole State’ option, and from Geoscience Australia’s OZCHEM National Whole Rock Geochemistry Dataset (http://pid.geoscience.gov.au/dataset/ga/65464). Whole-rock geochemistry data used in Fig. 1 and used to calculate average data for trace-element modelling (presented in Fig. 3) and from sources cited in ref. 35 or can be downloaded either from WACHEM or OZCHEM using sample numbers provided as Supplementary Table 6Source data are provided with this paper.

References

  1. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Rapp, R. P. & Watson, E. B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891–931 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Martin, H., Smithies, R. H., Rapp, R., Moyen, J.-F. & Champion, D. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1–24 (2005).

    Article  ADS  CAS  Google Scholar 

  4. Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).

    Article  ADS  CAS  Google Scholar 

  5. Martin, H., Moyen, J.-F., Guitreau, M., Blichert-Toft, J. & Le Pennec, J.-L. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198–199, 1–13 (2014).

    Article  ADS  Google Scholar 

  6. Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017); correction 545, 510 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. King, E. M., Valley, J. W., Davis, D. W. & Edwards, G. R. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambr. Res. 92, 365–387 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).

    Article  ADS  CAS  Google Scholar 

  9. Smithies, R. H., Champion, D. C. & Van Kranendonk, M. J. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet. Sci. Lett. 281, 298–306 (2009).

    Article  ADS  CAS  Google Scholar 

  10. Hickman, A. H. & Van Kranendonk, M. J. Early Earth evolution: evidence from the 3.5–1.8 Ga geological history of the Pilbara region of Western Australia. Episodes 35, 283–297 (2012).

    Article  Google Scholar 

  11. François, C., Philippot, P., Rey, P. & Rubatto, D. Burial and exhumation during Archean sagduction in the East Pilbara granite–greenstone terrane. Earth Planet. Sci. Lett. 396, 235–251 (2014).

    Article  ADS  Google Scholar 

  12. Van Kranendonk, M. J. et al. Making it thick: a volcanic plateau origin of Palaeoarchean continental lithosphere of the Pilbara and Kaapvaal cratons. In Continent Formation Through Time Geological Society Special Publication No. 389 (eds Roberts, N. M. W. et al.) 83–111 (The Geological Society of London, 2015).

  13. Wiemer, D., Schrank, C. E., Murphy, D. T., Wenham, L. & Allen, C. M. Earth’s oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nat. Geosci. 11, 357–361 (2018).

    Article  ADS  CAS  Google Scholar 

  14. Byerly, B., Kareem, K., Bao, H. & Byerly, G. R. Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archaean komatiites. Nat. Geosci. 10, 871–875 (2017).

    Article  ADS  CAS  Google Scholar 

  15. Debaille, V. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).

    Article  ADS  CAS  Google Scholar 

  16. Bédard, J. H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19–49 (2018).

    Article  ADS  Google Scholar 

  17. Hawkesworth, C. J. & Brown, M. Earth dynamics and the development of plate tectonics. Phil. Trans. R. Soc. A. 376, 20180228 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Nebel, O. et al. When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. Phil. Trans. R. Soc. A. 376, 20180103 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Cawood, P., Kröner, A. & Pisarevsky, S. Precambrian plate tectonics: criteria and evidence. GSA Today 16, 4–11 (2006).

    Article  Google Scholar 

  20. Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).

    Article  ADS  CAS  Google Scholar 

  21. Bindeman, I. N. & Valley, J. W. Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J. Petrol. 42, 1491–1517 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Petersson, A. et al. A new 3.59 Ga magmatic suite and a chondritic source to the east Pilbara Craton. Chem. Geol. 511, 51–70 (2019).

    Article  ADS  CAS  Google Scholar 

  23. Ge, R. et al. Generation of Eoarchean continental crust from altered mafic rocks derived from a chondritic mantle: The ~3.72 Ga Aktash gneisses, Tarim Craton (NW China). Earth Planet. Sci. Lett. 538, 116225 (2020).

    Article  CAS  Google Scholar 

  24. Wang, Y.-F., Li, X.-H., Jin, W., Zeng, L. & Zhang, J.-H. Generation and maturation of Mesoarchean continental crust in the Anshan Complex, North China Craton. Precambr. Res. 341, 105651 (2020).

    Article  ADS  CAS  Google Scholar 

  25. Zeh, A., Stern, R. A. & Gerdes, A. The oldest zircons of Africa—their U–Pb–Hf–O isotope and trace element systematics, and implications for Hadean to Archean crust–mantle evolution. Precambr. Res. 241, 203–230 (2014).

    Article  ADS  CAS  Google Scholar 

  26. Condie, K. C. How to make a continent: thirty-five years of TTG research. In Evolution of Archean Crust and Early Life (eds Dilek, Y. & Furnes, H.) 179–193 (Springer, 2014).

  27. Vezinet, A. et al. Hydrothermally-altered mafic crust as source for early Earth TTG: Pb/Hf/O isotope and trace element evidence in zircon from TTG of the Eoarchean Saglek Block, N. Labrador. Earth Planet. Sci. Lett. 503, 95–107 (2018).

    Article  ADS  CAS  Google Scholar 

  28. de Wit, M. J. & Furnes, H. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt—Paleoarchean crust in cold environments. Sci. Adv. 2, e1500368 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. André, L. et al. Early continental crust generated by reworking of basalts variably silicified by seawater. Nat. Geosci. 12, 769–773 (2019).

    Article  ADS  Google Scholar 

  30. Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modelling perspective. Precambr. Res. 271, 198–224 (2015).

    Article  ADS  CAS  Google Scholar 

  31. Mole, D. R. et al. Time-space evolution of an Archean craton: a Hf-isotope window into continent formation. Earth Sci. Rev. 196, 102831 (2019).

    Article  CAS  Google Scholar 

  32. Nutman, A. P., Bennett, V. C. & Friend, C. R. L. The emergence of the Eoarchaean proto-arc: evolution of a c. 3700 Ma convergent plate boundary at Isua, southern West Greenland. In Continent Formation Through Time Geological Society Special Publication No. 389 (eds Roberts, N. M. W. et al.) 113–133 (The Geological Society of London, 2015).

  33. Hastie, A. R. & Fitton, J. G. Eoarchaean tectonics: new constraints from high pressure-temperature experiments and mass balance modelling. Precambr. Res. 325, 20–38 (2019).

    Article  ADS  CAS  Google Scholar 

  34. Moyen, J.-F., Champion, D. C. & Smithies, R. H. The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth Environ. Sci. Trans. R. Soc. Edinb. 100, 35–50 (2009).

    CAS  Google Scholar 

  35. Champion, D. C. & Smithies, R. H. Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth. In Earth’s Oldest Rocks (eds Van Kranendonk, M. J. et al.) 369–409 (Elsevier, 2007).

  36. Smithies, R. H. & Champion, D. C. The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. J. Petrol. 41, 1653–1671 (2000).

    Article  ADS  CAS  Google Scholar 

  37. Stern, R. A. & Hanson, G. N. Archaean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J. Petrol. 32, 201–238 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Bindeman, I. N. et al. Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet. Sci. Lett. 235, 480–496 (2005).

    Article  ADS  CAS  Google Scholar 

  39. Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowicz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).

    Article  ADS  CAS  Google Scholar 

  41. Palme, H. & O’Neill, H. St. C. Cosmochemical estimates of mantle composition. In Treatise on Geochemistry 2nd edn, Vol. 3 (eds Holland, H. D. & Turekian, K. K.) 1–39 (Elsevier, 2014).

  42. Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, Q05B07 (2004).

    Article  Google Scholar 

  43. Gardiner, N. J. et al. Processes of crust formation in the early Earth imaged through Hf isotopes from the East Pilbara Terrane. Precambr. Res. 297, 56–76 (2017).

    Article  ADS  CAS  Google Scholar 

  44. Smithies, R. H. et al. No evidence for high-pressure melting of Earth’s crust in the Archean. Nat. Commun. 10, 5559 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smithies, R. H. et al. Two distinct origins for Archean greenstone belts. Earth Planet. Sci. Lett. 487, 106–116 (2018).

    Article  ADS  CAS  Google Scholar 

  46. O’Neill, C., Turner, S. & Rushmer, T. The inception of plate tectonics: a record of failure. Phil. Trans. R. Soc. A 376, 20170414 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Sun, S.-s. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins Geological Society Special Publication No. 42 (eds Saunders, A. D. & Norry, M. J.) 313–345 (The Geological Society of London, 1989).

  48. de Oliveira, M. A., Dall’Agnol, R. & Scaillet, B. Petrological constraints on crystallization conditions of Mesoarchean sanukitoid rocks, Southeastern Amazonian Craton, Brazil. J. Petrol. 51, 2121–2148 (2010).

    Article  ADS  Google Scholar 

  49. Pidgeon, R. T., Nemchin, A. A. & Cliff, J. Interaction of weathering solutions with oxygen and U–Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contrib. Mineral. Petrol. 166, 511–523 (2013).

    Article  ADS  CAS  Google Scholar 

  50. Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).

    Article  ADS  CAS  Google Scholar 

  51. Nasdala, L. et al. Zircon M257 – a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostand. Geoanal. Res. 32, 247–265 (2008).

    Article  CAS  Google Scholar 

  52. Cavosie, A. J. et al. The origin of high δ18O zircons: marbles, megacrysts, and metamorphism. Contrib. Mineral. Petrol. 162, 961–974 (2011).

    Article  ADS  CAS  Google Scholar 

  53. Van Kranendonk, M. J., Kirkland, C. L. & Cliff, J. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga. Lithos 228-229, 90–98 (2015).

    Article  ADS  Google Scholar 

  54. Pidgeon, R. T., Nemchin, A. A. & Whitehouse, M. J. The effect of weathering on U–Th–Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia. Geochim. Cosmochim. Acta 197, 142–166 (2017).

    Article  ADS  CAS  Google Scholar 

  55. Watson, E. B. & Harrison, T. M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64, 295–304 (1983).

    Article  ADS  CAS  Google Scholar 

  56. Smithies, R. H., Van Kranendonk, M. J. & Champion, D. C. It started with a plume: early Archaean basaltic proto-continental crust. Earth Planet. Sci. Lett. 238, 284–297 (2005).

    Article  ADS  CAS  Google Scholar 

  57. Geological Survey of Western Australia Compilation of Geochronology Information, 2020 https://dmpbookshop.eruditetechnologies.com.au/product/compilation-of-geochronology-information-2020.do (Geological Survey of Western Australia, 2020).

  58. Martin, D. M. B., Hocking, R. M., Riganti, A. & Tyler, I. M. Geological Map of Western Australia, 1:2 500 000 14th edn (Geological Survey of Western Australia, 2015).

Download references

Acknowledgements

R.H.S., Y.L., M.T.D.W. and S.P.J. publish with the permission of the Executive Director, Geological Survey of Western Australia. T.E.J. acknowledges funding from the Australian Government through an Australian Research Council Discovery Project (DP200101104), and support from the State Key Laboratory for Geological Processes and Mineral Resources, China University of Geosciences, Wuhan (Open Fund GPMR201903). This project was supported by funding from the Western Australian Government Exploration Incentive Scheme (EIS). We thank M. Prause for drafting the figures and M. Aleshin for assistance with SIMS analyses. We acknowledge the facilities, and the scientific and technical assistance, of Microscopy Australia at the Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, a facility funded by the University, and the Western Australian and Commonwealth of Australia governments.

Author information

Authors and Affiliations

Authors

Contributions

R.H.S. and Y.L. conceived the research, and R.H.S., Y.L., C.L.K. and T.E.J. prepared the first draft of the manuscript with input from D.R.M. and D.C.C. L.M. and H.J. contributed to sample analyses and interpretation and M.T.D.W. and S.P.J. contributed to sample collection and data interpretation. All co-authors assisted in reviewing and editing the revised manuscript.

Corresponding author

Correspondence to Yongjun Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Ilya Bindeman, Tracy Rushmer and John Valley for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Location maps for samples.

a, Samples taken from the Pilbara Craton. WPT, West Pilbara Terrane; CPTZ, Central Pilbara Tectonic Zone; MCB, Mosquito Creek Basin. b, Samples taken from the Yilgarn Craton. The geological map is from ref. 58, reproduced under a CC BY 4.0 licence.

Source data

Extended Data Fig. 2 Compositions of potential hybrid sources.

Major element compositions of potential hybrid source regions normalized against average >3.45-Gyr-old Pilbara tholeiitic basalt. Av., average.

Source data

Extended Data Fig. 3 Oxygen isotope compositions of Pilbara and Yilgarn granites.

a, Variation in O isotope compositions of zircon (δ18O(zircon)) from granites of the Pilbara Craton against whole-rock SiO2 and the zircon saturation temperature, Tzircon saturation55. b, Variation in O isotope compositions of zircon (δ18O(zircon)) from granites of the Yilgarn Craton against whole-rock SiO2 and zircon saturation temperature55. The dashed horizontal lines indicate the 2σ range of mantle zircon, 5.3‰ ± 0.6‰. Vertical error bars represent 1σ uncertainty.

Source data

Extended Data Fig. 4 Variation of Sr/Sr* with SiO2 for sanukitoids from the Pilbara Craton36.

Values above or below one indicate positive or negative mantle-normalized Sr anomalies, respectively. Sr* is the Sr concentration calculated by extrapolating between Ce and Nd on mantle-normalized trace-element diagram.

Source data

Extended Data Table 1 Sample details and U–Pb age data for granitic rocks from the Pilbara and Yilgarn cratons
Extended Data Table 2 Oxygen isotope data for granitic rocks from the Pilbara and Yilgarn cratons

Supplementary information

Supplementary Tables

This file contains Supplementary Tables 1-6.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smithies, R.H., Lu, Y., Kirkland, C.L. et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature 592, 70–75 (2021). https://doi.org/10.1038/s41586-021-03337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03337-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing