Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microscopy of the interacting Harper–Hofstadter model in the two-body limit

Abstract

The interplay between magnetic fields and interacting particles can lead to exotic phases of matter that exhibit topological order and high degrees of spatial entanglement1. Although these phases were discovered in a solid-state setting2,3, recent innovations in systems of ultracold neutral atoms—uncharged atoms that do not naturally experience a Lorentz force—allow the synthesis of artificial magnetic, or gauge, fields4,5,6,7,8,9,10. This experimental platform holds promise for exploring exotic physics in fractional quantum Hall systems, owing to the microscopic control and precision that is achievable in cold-atom systems11,12. However, so far these experiments have mostly explored the regime of weak interactions, which precludes access to correlated many-body states4,13,14,15,16,17. Here, through microscopic atomic control and detection, we demonstrate the controlled incorporation of strong interactions into a two-body system with a chiral band structure. We observe and explain the way in which interparticle interactions induce chirality in the propagation dynamics of particles in a ladder-like, real-space lattice governed by the interacting Harper–Hofstadter model, which describes lattice-confined, coherently mobile particles in the presence of a magnetic field18. We use a bottom-up strategy to prepare interacting chiral quantum states, thus circumventing the challenges of a top-down approach that begins with a many-body system, the size of which can hinder the preparation of controlled states. Our experimental platform combines all of the necessary components for investigating highly entangled topological states, and our observations provide a benchmark for future experiments in the fractional quantum Hall regime.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strongly interacting atoms in a gauge field.
Figure 2: Schematic of the experiments.
Figure 3: Single-particle chiral dynamics and band structure.
Figure 4: Interacting chiral trajectories.
Figure 5: Physical mechanism for chirality with interactions.

Similar content being viewed by others

References

  1. Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010)

    Article  ADS  Google Scholar 

  2. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  CAS  Google Scholar 

  3. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)

    Article  ADS  Google Scholar 

  4. Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. P. & Cornell, E. A. Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level. Phys. Rev. Lett. 92, 040404 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Lignier, H. et al. Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett. 99, 220403 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Jaksch, D. & Zoller, P. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003)

    Article  ADS  Google Scholar 

  7. Kolovsky, A. R. Creating artificial magnetic fields for cold atoms by photon-assisted tunneling. Europhys. Lett. 93, 20003 (2011)

    Article  ADS  Google Scholar 

  8. Lin, Y.-J., Compton, R. L., Jiménez-Garca, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009)

    Article  ADS  CAS  Google Scholar 

  9. An, F. A., Meier, E. J. & Gadway, B. Direct observation of chiral currents and magnetic reflection in atomic flux lattices. Sci. Adv. 3, e1602685 (2017)

    Article  ADS  Google Scholar 

  10. Kolkowitz, S. et al. Spin–orbit-coupled fermions in an optical lattice clock. Nature 542, 66–70 (2017)

    Article  ADS  CAS  Google Scholar 

  11. Hafezi, M., Sørensen, A. S., Demler, E. & Lukin, M. D. Fractional quantum Hall effect in optical lattices. Phys. Rev. A 76, 023613 (2007)

    Article  ADS  Google Scholar 

  12. Gemelke, N., Sarajlic, E. & Chu, S. Rotating few-body atomic systems in the fractional quantum Hall regime. Preprint at https://arxiv.org/abs/1007.2677 (2010)

  13. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014)

    Article  ADS  CAS  Google Scholar 

  14. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  CAS  Google Scholar 

  17. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  18. Harper, P. G. Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68, 874–878 (1955)

    Article  ADS  Google Scholar 

  19. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013)

    Article  ADS  CAS  Google Scholar 

  20. Leder, M. et al. Real-space imaging of a topologically protected edge state with ultracold atoms in an amplitude-chirped optical lattice. Nat. Commun. 7, 13112 (2016)

    Article  ADS  CAS  Google Scholar 

  21. Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014)

    Article  ADS  CAS  Google Scholar 

  22. Hügel, D. & Paredes, B. Chiral ladders and the edges of quantum Hall insulators. Phys. Rev. A 89, 023619 (2014)

    Article  ADS  Google Scholar 

  23. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Dhar, A. et al. Bose-Hubbard model in a strong effective magnetic field: emergence of a chiral Mott insulator ground state. Phys. Rev. A 85, 041602 (2012)

    Article  ADS  Google Scholar 

  26. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017)

    Article  CAS  Google Scholar 

  27. Zupancic, P. et al. Ultra-precise holographic beam shaping for microscopic quantum control. Opt. Express 24, 13881–13893 (2016)

    Article  ADS  CAS  Google Scholar 

  28. Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. He, Y.-C., Grusdt, F., Kaufman, A., Greiner, M. & Vishwanath, A. Realizing and Adiabatically Preparing Bosonic Integer and Fractional Quantum Hall states in Optical Lattices. Preprint at https://arxiv.org/abs/1703.00430 (2017)

Download references

Acknowledgements

We acknowledge conversations with M. Aidelsburger, I. Cirac, E. Demler, M. Endres, M. Foss-Feig, N. Gemelke, D. Greif, W. Ketterle, R. Ma, H. C. Po, J. Simon and A. Vishwanath. We are supported by grants from the National Science Foundation, the Gordon and Betty Moore Foundation’s EPiQS Initiative, an Air Force Office of Scientific Research MURI programme, an Army Research Office MURI programme and the NSF Graduate Research Fellowship Program (M.R.).

Author information

Authors and Affiliations

Authors

Contributions

M.E.T., A.L., M.R., R.S., P.M.P. and A.M.K. contributed to constructing the experiment, collecting and analysing the data, and writing the manuscript. F.G. and T.M. contributed to analysing the data and writing the manuscript. D.B. developed the short-time analytic result. M.G. supervised the work.

Corresponding author

Correspondence to Markus Greiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks L. LeBlanc and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-14 and Supplementary References. (PDF 4433 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, M., Lukin, A., Rispoli, M. et al. Microscopy of the interacting Harper–Hofstadter model in the two-body limit. Nature 546, 519–523 (2017). https://doi.org/10.1038/nature22811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22811

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing