Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate-smart soils

Abstract

Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decision tree for cropland GHG mitigating practices.
Figure 2: Global potential for agricultural-based GHG mitigation practices.
Figure 3: Expanding the role of agricultural soil GHG mitigation will require an integrated research support and implementation platform.

Similar content being viewed by others

References

  1. Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003)

    CAS  Google Scholar 

  2. Smith, P. et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 813–922 (Cambridge Univ. Press, 2014)

  3. Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015)

    ADS  Google Scholar 

  4. Smith, P. Soils and climate change. Curr. Opin. Environ. Sust. 4, 539–544 (2012)

    Google Scholar 

  5. Verified Carbon Standard (VCS)http://www.v-c-s.org/ (accessed May 2015)

  6. American Carbon Registry (ACR)http://americancarbonregistry.org/ (accessed May 2015)

  7. Lavallée, S. & Plouffe, S. The ecolabel and sustainable development. Int. J. Life Cycle Assess. 9, 349–354 (2004)

    Google Scholar 

  8. Kahiluoto, H., Smith, P., Moran, D. & Olesen, J. E. Enabling food security by verifying agricultural carbon sequestration. Nature Clim. Change 4, 309–311 (2014)

    ADS  Google Scholar 

  9. Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 465–570 (Cambridge Univ. Press, 2013)

  10. Join the 4‰ Initiative Soils for Food Security and Climatehttp://agriculture.gouv.fr/join-40-initiative-soils-food-security-and-climate-0 (accessed 23 Sept 2015)

  11. Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996)

    CAS  Google Scholar 

  12. Paustian, K. et al. Agricultural soil as a C sink to offset CO2 emissions. Soil Use Manage. 13, 230–244 (1997)

    Google Scholar 

  13. West, T. O. & Six, J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim. Change 80, 25–41 (2007)

    ADS  CAS  Google Scholar 

  14. Davidson, E. A. & Ackerman, I. L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193 (1993)

    CAS  Google Scholar 

  15. Ogle, S. M., Breidt, F. J. & Paustian, K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72, 87–121 (2005)

    Google Scholar 

  16. Conant, R. T., Paustian, K. & Elliott, E. T. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343–355 (2001)

    Google Scholar 

  17. Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002)

    ADS  Google Scholar 

  18. IPCC. Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories (eds Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. ) Vol. 4, Agriculture, Forestry and Other Land Use (AFOLU)http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (Institute for Global Environmental Strategies, 2006)

  19. Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).A comprehensive analysis of agricultural GHG emissions and mitigation potentials including estimated C price impacts on mitigation activities.

    CAS  PubMed  Google Scholar 

  20. Knox, S. H. et al. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Glob. Change Biol. 21, 750–765 (2015)

    ADS  Google Scholar 

  21. Foley, J. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011)

    ADS  CAS  PubMed  Google Scholar 

  22. Kell, D. Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Phil. Trans. R. Soc. B 367, 1589–1597 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Burney, J. A. et al. Greenhouse gas mitigation by agricultural intensification. Proc. Natl Acad. Sci. USA 107, 12052–12057 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilhelm, W. W., Johnson, J. M. F., Hatfield, J. L., Voorhees, W. B. & Linden, D. R. Crop and soil productivity response to corn residue removal: a literature review. Agron. J. 96, 1–17 (2004)

    Google Scholar 

  25. Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).This paper combines an analysis of globally distributed field data with simulation modelling to quantify potential soil C increases with adoption of cover crops on previously fallow soils.

    CAS  Google Scholar 

  26. Tonitto, C., David, M. B. & Drinkwater, L. E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 112, 58–72 (2006)

    Google Scholar 

  27. Lemke, R. L., VandenBygaart, A. J., Campbell, C. A., Lafond, G. P. & Grant, B. Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agric. Ecosyst. Environ. 135, 42–51 (2010)

    CAS  Google Scholar 

  28. Shcherbak, I., Millar, N. & Robertson, G. P. Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).This paper shows that N 2 O emissions are greater than previously thought for soils receiving high rates of N fertilizer.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000)

    CAS  Google Scholar 

  30. Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nature Clim. Change 4, 678–683 (2014)

    ADS  Google Scholar 

  31. Kravchenko, A. N. & Robertson, G. P. Whole-profile soil carbon stocks: the danger of assuming too much from analyses of too little. Soil Sci. Soc. Am. J. 75, 235–240 (2011)

    ADS  CAS  Google Scholar 

  32. McSherry, M. E. & Ritchie, M. E. Effects of grazing on grassland soil carbon: a global review. Glob. Change Biol. 19, 1347–1357 (2013)

    ADS  Google Scholar 

  33. Scholes, M. J. & Scholes, R. J. Dust unto dust. Science 342, 565–566 (2013)

    ADS  CAS  PubMed  Google Scholar 

  34. Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011)

    ADS  Google Scholar 

  35. Cotrufo, M. F., Wallenstein, M., Boot, C. M., Denef, K. & Paul, E. A. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013)

    ADS  Google Scholar 

  36. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011)

    ADS  CAS  PubMed  Google Scholar 

  37. Stewart, C. E., Plant, A. F., Paustian, K., Conant, R. & Six, J. Soil carbon saturation: linking concept and measurable carbon pools. Soil Sci. Soc. Am. J. 72, 379–392 (2008)

    ADS  CAS  Google Scholar 

  38. Rumpel, C. & Koegel-Knabner, I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158 (2011)

    CAS  Google Scholar 

  39. Nadeu, E., Gobin, A., Fiener, P., van Wesemael, B. & van Oost, K. Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes. Glob. Change Biol. 21, 3181–3192 (2015)

    ADS  Google Scholar 

  40. Grandy, A. S. & Neff, J. C. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 404, 297–307 (2008)

    ADS  CAS  PubMed  Google Scholar 

  41. Ryals, R., Hartman, M. D., Parton, W. J., DeLonge, M. & Silver, W. L. Long-term climate change mitigation potential with organic matter management on grasslands. Ecol. Appl. 25, 531–545 (2015).Field experiments and modelling were used to show reductions in net GHG emissions from grazed annual grasslands using composted green waste applications.

    PubMed  Google Scholar 

  42. Lehmann, J. et al. In Biochar for Environmental Management: Science, Technology and Implementation (eds Lehmann, J. & Joseph, S. ) 235–282 (Taylor and Francis, 2015)

  43. Roberts, K., Gloy, B., Joseph, S., Scott, N. & Lehmann, J. Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential. Environ. Sci. Technol. 44, 827–833 (2010)

    ADS  CAS  PubMed  Google Scholar 

  44. DeLonge, M. S., Ryals, R. & Silver, W. L. A lifecycle model to evaluate carbon sequestration potential and greenhouse gas dynamics of managed grasslands. Ecosystems 16, 962–979 (2013)

    CAS  Google Scholar 

  45. Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010)

    CAS  Google Scholar 

  46. Zimmerman, A., Gao, B. & Ahn, M. Y. Positive and negative mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 43, 1169–1179 (2011)

    CAS  Google Scholar 

  47. Whitman, T., Zhu, Z. & Lehmann, J. Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon. Environ. Sci. Technol. 48, 13727–13734 (2014)

    ADS  CAS  PubMed  Google Scholar 

  48. Whitman, T., Nicholson, C. F., Torres, D. & Lehmann, J. Climate change impact of biochar cook stoves in Western Kenyan farm households: system dynamics model analysis. Environ. Sci. Technol. 45, 3687–3694 (2011)

    ADS  CAS  PubMed  Google Scholar 

  49. Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob. Biogeochem. Cycles 16, 1058 (2002)

    ADS  Google Scholar 

  50. Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009)

    Google Scholar 

  51. Akiyama, H., Yan, X. Y. & Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob. Change Biol. 16, 1837–1846 (2010)

    ADS  Google Scholar 

  52. Aguilera, E., Lassaletta, L., Sanz Cobeña, A., Garnier, J. & Vallejo Garcia, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. Agric. Ecosyst. Environ. 164, 32–52 (2013)

    CAS  Google Scholar 

  53. van Kessel, C. et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob. Change Biol. 19, 33–44 (2013)

    ADS  Google Scholar 

  54. Millar, N., Robertson, G. P., Grace, P. R., Gehl, R. J. & Hoben, J. P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (maize) production: an emissions reduction protocol for US Midwest agriculture. Mitig. Adapt. Strat. Glob. Change 15, 185–204 (2010)

    Google Scholar 

  55. Robertson, G. P. Nitrogen–climate interactions in US agriculture. Biogeochemistry 114, 41–70 (2013)

    CAS  Google Scholar 

  56. Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nature Clim. Change 2, 410–416 (2012)

    ADS  CAS  Google Scholar 

  57. Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009)

    CAS  PubMed  Google Scholar 

  58. Le Mer, J. & Roger, P. Production, oxidation, emission and consumption of methane by soils. Eur. J. Soil Biol. 37, 25–50 (2001)

    CAS  Google Scholar 

  59. Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998)

    CAS  Google Scholar 

  60. Suwanwaree, P. & Robertson, G. P. Methane oxidation in forest, successional, and no-till agricultural ecosystems: effects of nitrogen and soil disturbance. Soil Sci. Soc. Am. J. 69, 1722–1729 (2005)

    CAS  Google Scholar 

  61. Linquist, B. A. et al. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Change Biol. 21, 407–417 (2015)

    ADS  Google Scholar 

  62. Liu, Y. et al. Carbon dioxide flux from rice paddy soils in central China: effects of intermittent flooding and draining cycles. PLoS ONE 8, e56562 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Organisation for Economic Co-operation and Development (OECD)–Food and Agriculture Organization (FAO) of the United Nations. Agricultural Outlook 2015–2024.http://stats.oecd.org (worldwide rice production for 2000 to 2024 period, accessed March 2016)

  64. van Groenigen, K. J., van Kessel, C. & Hungate, B. A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nature Clim. Change 3, 288–291 (2012)

    ADS  Google Scholar 

  65. Levine, U. et al. Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J. 5, 1683–1691 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Su, J. et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 523, 602–606 (2015)

    ADS  CAS  PubMed  Google Scholar 

  67. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nature Commun. 1, 56 (2010).This paper calculates the global technical potential of greenhouse gas emission reductions by biochar systems as a function of its effects on soil improvement.

    ADS  Google Scholar 

  68. Lynch, J. P. & Wojciechowski, T. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J. Exp. Bot. 66, 2199–2210 (2015).This paper looks at the potential for breeding plants with more root production and tolerance to ‘problem soils’, to increase yields, nutrient and water capture, and C sequestration.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, S. & De Smet, I. Root system architecture: insights from Arabidopsis and cereal crops introduction. Phil. Trans. R. Soc. B 367, 1441–1452 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Conant, R. T., Ogle, S. M., Paul, E. A. & Paustian, K. Measuring and monitoring soil organic carbon stocks in agricultural lands for climate mitigation. Front. Ecol. Environ 9, 169–173 (2011)

    Google Scholar 

  71. Paustian, K., Ogle, S. M. & Conant, R. T. In Handbook of Climate Change and Agroecosystems: Impact, Adaptation and Mitigation (eds Hillel, D. & Rosenzweig, C. ) 307–341 (Imperial College Press, 2011.)

  72. Hillier, J. G. A farm-focused calculator for emissions from crop and livestock production. Environ. Modell. Softw. 26, 1070–1078 (2011)

    Google Scholar 

  73. Swallow, B. M. & Goddard, T. W. Value chains for bio-carbon sequestration services: lessons from contrasting cases in Canada, Kenya and Mozambique. Land Use Policy 31, 81–89 (2013)

    Google Scholar 

  74. National Academy of Sciences. Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements http://www.nap.edu/download.php?record_id=12883 (eds Pacala, S. et al.) 1–110 (National Academies Press, 2010)

  75. Paustian, K. et al. in Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GraceNet to Address Our Changing Climate (eds Liebig, M., Franzluebbers, A. & Follett, R. ) 251–270 (Academic Press, 2012)

  76. Paustian, K. Bridging the data gap: engaging developing country farmers in greenhouse gas accounting. Environ. Res. Lett. 8, 021001 (2013).This paper proposes the development of mobile apps to ‘crowd-source’ local-scale knowledge of land use and management data to help improve GHG inventories and project-scale accounting in developing countries.

    ADS  Google Scholar 

  77. Ogle, S. M. et al. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob. Change Biol. 16, 810–822 (2010)

    ADS  Google Scholar 

  78. Smith, P. et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob. Change Biol. 18, 2089–2101 (2012)

    ADS  Google Scholar 

  79. Bellassen, V. et al. Monitoring, reporting and verifying emissions in the climate economy. Nature Clim. Change 5, 319–328 (2015)

    ADS  CAS  Google Scholar 

  80. van Wesemael, B. et al. How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils? Plant Soil 338, 247–259 (2011)

    Google Scholar 

  81. Ogle, S. M., Breidt, F. J., Easter, M., Williams, S. & Paustian, K. An empirically based approach for estimating uncertainty associated with modeling carbon sequestration in soils. Ecol. Modell. 205, 453–463 (2007)

    Google Scholar 

  82. Peters, W. et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl Acad. Sci. USA 104, 18925–18930 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schuh, A. E. et al. Evaluating atmospheric CO2 inversions at multiple scales over highly-inventoried agricultural landscape. Glob. Change Biol. 19, 1424–1439 (2013)

    ADS  Google Scholar 

  84. Miles, N. L. et al. Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with a tower-based network in the U.S. upper Midwest. J. Geophys. Res. 117, G01019 (2012)

    ADS  Google Scholar 

  85. Lauvaux, T. et al. Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system. Atmos. Chem. Phys. 12, 337–354 (2012)

    ADS  CAS  Google Scholar 

  86. Cooley, D., Breidt, F. J., Ogle, S. M., Schuh, A. E. & Lauvaux, T. A constrained least-squares approach to combine bottom-up and top-down CO2 flux estimates. Environ. Ecol. Stat. 20, 129–146 (2013).One of the first studies using independent ground- and atmosphere-based methods to validate GHG emissions estimates for a large agriculturally intensive region.

    MathSciNet  CAS  Google Scholar 

  87. Kadygrov, N. et al. Role of simulated GOSAT total column CO2 observations in surface CO2 flux uncertainty reduction. J. Geophys. Res. 114, D21208 (2009)

    ADS  Google Scholar 

  88. Basu, S. et al. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2 . Atmos. Chem. Phys. 13, 8695–8717 (2013)

    ADS  Google Scholar 

  89. Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004)

    ADS  CAS  PubMed  Google Scholar 

  90. Alexander, P., Paustian, K., Smith, P. & Moran, D. The economics of soil C sequestration and agricultural emissions abatement. Soil 1, 331–339 (2015)

    CAS  Google Scholar 

  91. NitroEuropehttp://www.nitroeurope.eu (accessed May 2015)

  92. GRACEnethttp://www.ars.usda.gov/research/programs/programs.htm?np_code=212&docid=21223 (USDA, accessed May 2015)

  93. Dhawale, N. M. et al. Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer. Eur. J. Soil Sci. 66, 661–669 (2015)

    Google Scholar 

  94. Yeluripati, J. et al. Global Research Alliance Modelling Platform (GRAMP): an open web platform for modelling greenhouse gas emissions from agro-ecosystems. Comp. Elec. Agric. 111, 112–120 (2015)

    Google Scholar 

  95. Sanchez, P. Digital soil map of the world. Science 325, 680–681 (2009)

    CAS  PubMed  Google Scholar 

  96. The Web Soil Surveyhttp://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed May 2015)

  97. Awan, M. I., van Oort, P. A. J., Ahmad, R., Bastiaans, L. & Meinke, H. Farmers’ views on the future prospects of aerobic rice culture in Pakistan. Land Use Policy 42, 517–526 (2015)

    Google Scholar 

  98. Smith, P. et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 118, 6–28 (2007)

    Google Scholar 

  99. Louwagie, G. S.H., Sammeth, F. & Ratinger, T. The potential of European Union policies to address soil degradation in agriculture. Land Degrad. Dev. 22, 5–17 (2011)

    Google Scholar 

  100. Decision No 529/2013/EU of the European Parliament and of the Council of 21 May 2013 on accounting rules on greenhouse gas emissions and removals resulting from activities relating to land use, land-use change and forestry and on information concerning actions relating to those activities. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2013_165_R_0080_01 (EUR-Lex, Access to European Union Law, accessed May 2015)

  101. Field to Market Alliancehttps://www.fieldtomarket.org/ (accessed May 2015)

  102. Unilever Sustainable Agriculture Codehttps://www.unilever.com/Images/sac-2015_tcm244-427050_en.pdf (accessed Feb 2016)

  103. Horowitz, J. K. & Just, R. E. Economics of additionality for environmental services from agriculture. J. Environ. Econ. Manage. 66, 105–122 (2013)

    Google Scholar 

Download references

Acknowledgements

We thank A. Swan for figure design. We thank the following organisations for support: USDA/NIFA (grant number 2011-67003-30205 to K.P. and S.O.); USDA/NRCS (grant number CESU-68-7482-15-507 to K.P.); the NSF (grant number DEB 1027253 to G.P.R.); the US DOE (grant number DE-FCO2-07ER64494 to G.P.R.); NERC (grant number NE/M016900/1 to P.S.); and the Belmont Forum/FACCE-JPI (grant number NE/M021327/1 to P.S.).

Author information

Authors and Affiliations

Authors

Contributions

K.P. led the development of the manuscript and the integration of content. All authors contributed equally to drafting sections of the manuscript and making revisions.

Corresponding author

Correspondence to Keith Paustian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paustian, K., Lehmann, J., Ogle, S. et al. Climate-smart soils. Nature 532, 49–57 (2016). https://doi.org/10.1038/nature17174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature17174

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing