Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The concept and future prospects of soil health

Abstract

Soil health is the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals and humans, and connects agricultural and soil science to policy, stakeholder needs and sustainable supply-chain management. Historically, soil assessments focused on crop production, but, today, soil health also includes the role of soil in water quality, climate change and human health. However, quantifying soil health is still dominated by chemical indicators, despite growing appreciation of the importance of soil biodiversity, owing to limited functional knowledge and lack of effective methods. In this Perspective, the definition and history of soil health are described and compared with other soil concepts. We outline ecosystem services provided by soils, the indicators used to measure soil functionality and their integration into informative soil-health indices. Scientists should embrace soil health as an overarching principle that contributes to sustainability goals, rather than only a property to measure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soil fertility, quality, health and security.
Fig. 2: Soil-health and global-ecosystem services.
Fig. 3: Soil-ecosystem-services management.
Fig. 4: Soil-health indicators and relevance to assessments.
Fig. 5: Biological, chemical and physical indicators included in soil-health-assessment schemes6.

Similar content being viewed by others

References

  1. Ladyman, J., Lambert, J. & Wiesner, K. What is a complex system? Eur. J. Philos. Sci. 3, 33–67 (2013).

    Google Scholar 

  2. Brevik, E. C. et al. The interdisciplinary nature of SOIL. Soil 1, 117–129 (2015).

    Google Scholar 

  3. Blum, W. E. Functions of soil for society and the environment. Rev. Environ. Sci. Biotechnol. 4, 75–79 (2005).

    Google Scholar 

  4. Baveye, P. C., Baveye, J. & Gowdy, J. Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Front. Environ. Sci. 4, 41 (2016).

    Google Scholar 

  5. Keith, A. M., Schmidt, O. & McMahon, B. J. Soil stewardship as a nexus between ecosystem services and one health. Ecosyst. Serv. 17, 40–42 (2016).

    Google Scholar 

  6. Bünemann, E. K. et al. Soil quality–a critical review. Soil Biol. Biochem. 120, 105–125 (2018).

    Google Scholar 

  7. Patzel, N., Sticher, H. & Karlen, D. L. Soil fertility - phenomenon and concept. J. Plant Nutr. Soil Sci. 163, 129–142 (2000).

    Google Scholar 

  8. Doran, J. W. & Parkin, T. B. in Defining Soil Quality for a Sustainable Environment Vol. 32 (eds Doran, J. W., Coleman, D. C., Bezdicek, D. F. & Stewart, B. A.) 1–21 (Soil Science Society of America, 1994).

  9. Pankhurst, C. E., Doube, B. M. & Gupta, V. V. S. R. in Biological Indicators of Soil Health (eds Pankhurst, C., Doube, B. & Gupta, V.) 419–435 (CAB International, 1997).

  10. McBratney, A., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).

    Google Scholar 

  11. Koch, A. et al. Soil security: solving the global soil crisis. Glob. Policy 4, 434–441 (2013).

    Google Scholar 

  12. Stankovics, P., Tóth, G. & Tóth, Z. Identifying gaps between the legislative tools of soil protection in the EU member states for a common European soil protection legislation. Sustainability 10, 2886 (2018).

    Google Scholar 

  13. Montanarella, L. Agricultural policy: govern our soils. Nature 528, 32–33 (2015).

    Google Scholar 

  14. Jian, J., Du, X. & Stewart, R. D. A database for global soil health assessment. Sci. Data 7, 16 (2020).

    Google Scholar 

  15. Karlen, D. L., Veum, K. S., Sudduth, K. A., Obrycki, J. F. & Nunes, M. R. Soil health assessment: past accomplishments, current activities, and future opportunities. Soil Tillage Res. 195, 104365 (2019).

    Google Scholar 

  16. Norris, C. E. & Congreves, K. A. Alternative management practices improve soil health indices in intensive vegetable cropping systems: a review. Front. Environ. Sci. 6, 50 (2018).

    Google Scholar 

  17. O’Dell, R. E. & Claassen, V. P. Vertical distribution of organic amendment influences the rooting depth of revegetation species on barren, subgrade serpentine substrate. Plant Soil 285, 19–29 (2006).

    Google Scholar 

  18. Congreves, K. A., Hayes, A., Verhallen, E. A. & Van Eerd, L. L. Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil Tillage Res. 152, 17–28 (2015).

    Google Scholar 

  19. Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).

    Google Scholar 

  20. Jenkinson, D. S. The Rothamsted long-term experiments: Are they still of use? Agron. J. 83, 2–10 (1991).

    Google Scholar 

  21. Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    Google Scholar 

  22. Chaparro, J. M., Sheflin, A. M., Manter, D. K. & Vivanco, J. M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).

    Google Scholar 

  23. Bonanomi, G., Lorito, M., Vinale, F. & Woo, S. L. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 56, 1–20 (2018).

    Google Scholar 

  24. Chen, X. D. et al. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 58, 1–20 (2020).

    Google Scholar 

  25. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    Google Scholar 

  26. Ogle, S. M., Swan, A. & Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 149, 37–49 (2012).

    Google Scholar 

  27. Zimnicki, T. et al. On quantifying water quality benefits of healthy soils. BioScience 70, 343–352 (2020).

    Google Scholar 

  28. Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E. & Ippolito, A. Agricultural water pollution: key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 36, 20–27 (2019).

    Google Scholar 

  29. Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).

    Google Scholar 

  30. Lamichhane, S., Krishna, K. B. & Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148, 336–353 (2016).

    Google Scholar 

  31. Tournebize, J., Chaumont, C. & Mander, Ü. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng. 103, 415–425 (2017).

    Google Scholar 

  32. Hanson, J. R., Macalady, J. L., Harris, D. & Scow, K. M. Linking toluene degradation with specific microbial populations in soil. Appl. Environ. Microbiol. 65, 5403–5408 (1999).

    Google Scholar 

  33. Li, G., Sun, G. X., Ren, Y., Luo, X. S. & Zhu, Y. G. Urban soil and human health: a review. Eur. J. Soil Sci. 69, 196–215 (2018).

    Google Scholar 

  34. Laurenson, G., Laurenson, S., Bolan, N., Beecham, S. & Clark, I. The role of bioretention systems in the treatment of stormwater. Adv. Agron. 120, 223–274 (2013).

    Google Scholar 

  35. Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    Google Scholar 

  36. Kadam, A. M., Oza, G. H., Nemade, P. D. & Shankar, H. S. Pathogen removal from municipal wastewater in constructed soil filter. Ecol. Eng. 33, 37–44 (2008).

    Google Scholar 

  37. Welch, R. M. & Graham, R. D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364 (2004).

    Google Scholar 

  38. Barrett, C. B. & Bevis, L. E. The self-reinforcing feedback between low soil fertility and chronic poverty. Nat. Geosci. 8, 907–912 (2015).

    Google Scholar 

  39. Wood, S. A., Tirfessa, D. & Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 266, 100–108 (2018).

    Google Scholar 

  40. Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    Google Scholar 

  41. Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. & Kopriva, S. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front. Plant Sci. 8, 1617 (2017).

    Google Scholar 

  42. Schlatter, D., Kinkel, L., Thomashow, L., Weller, D. & Paulitz, T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107, 1284–1297 (2017).

    Google Scholar 

  43. Rillig, M. C., Lehmann, A., Lehmann, J., Camenzind, T. & Rauh, C. Soil biodiversity effects from field to fork. Trends Plant Sci. 23, 17–24 (2018).

    Google Scholar 

  44. Oliver, M. A. & Gregory, P. J. Soil, food security and human health: a review. Eur. J. Soil Sci. 66, 257–276 (2015).

    Google Scholar 

  45. Hussein, H. S. & Brasel, J. M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167, 101–134 (2001).

    Google Scholar 

  46. Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).

    Google Scholar 

  47. Schatz, A., Bugle, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).

    Google Scholar 

  48. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Google Scholar 

  49. Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).

    Google Scholar 

  50. Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    Google Scholar 

  51. Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    Google Scholar 

  52. Denef, K. & Six, J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. Eur. J. Soil Sci. 56, 469–479 (2005).

    Google Scholar 

  53. Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).

    Google Scholar 

  54. Van Wesemael, B. et al. An indicator for organic matter dynamics in temperate agricultural soils. Agric. Ecosyst. Environ. 274, 62–75 (2019).

    Google Scholar 

  55. Bouma, J. et al. in Global Soil Security (eds Field, D. J., Morgan, C. L. S. & McBratney, A. B.) 27–44 (Springer, 2017).

  56. Schoenholtz, S. H., Van Miegroet, H. & Burger, J. A. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For. Ecol. Manag. 138, 335–356 (2000).

    Google Scholar 

  57. Andrews, S. S. & Carroll, C. R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 11, 1573–1585 (2001).

    Google Scholar 

  58. Lilburne, L. R., Hewitt, A. E., Sparling, G. P. & Selvarajah, N. Soil quality in New Zealand: policy and the science response. J. Environ. Qual. 31, 1768–1773 (2002).

    Google Scholar 

  59. Idowu, O. J. et al. Use of an integrative soil health test for evaluation of soil management impacts. Renew. Agric. Food Syst. 24, 214–224 (2009).

    Google Scholar 

  60. Cherubin, M. R. et al. A Soil Management Assessment Framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 80, 215–226 (2016).

    Google Scholar 

  61. E.U. Mission Board Soil Health and Food. Caring for Soil is Caring for Life. The Publications Office of the European Union https://op.europa.eu/en/web/eu-law-and-publications/publication-detail/-/publication/32d5d312-b689-11ea-bb7a-01aa75ed71a1 (European Commission, 2020).

  62. Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).

    Google Scholar 

  63. Kaiser, E. A. et al. Nitrous oxide release from arable soil: importance of N-fertilization, crops and temporal variation. Soil Biol. Biochem. 30, 1553–1563 (1998).

    Google Scholar 

  64. Baldock, J. A., Beare, M. H., Curtin, D. & Hawke, B. Stocks, composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy. Soil Res. 56, 468–480 (2018).

    Google Scholar 

  65. Rossel, R. V. et al. Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls. Nat. Geosci. 12, 547–552 (2019).

    Google Scholar 

  66. Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).

    Google Scholar 

  67. Pietrelli, A., Bavasso, I., Lovecchio, N., Ferrara, V. & Allard, B. in 8th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI) 302–306 (IEEE, 2019).

  68. Shaikh, F. K. & Zeadally, S. Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016).

    Google Scholar 

  69. Tan, X., Sun, Z., Wang, P. & Sun, Y. Environment-aware localization for wireless sensor networks using magnetic induction. Ad Hoc Netw. 98, 102030 (2020).

    Google Scholar 

  70. Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).

    Google Scholar 

  71. Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1078 (2014).

    Google Scholar 

  72. Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Google Scholar 

  73. Rillig, M. C., Bonneval, K. & Lehmann, J. Sounds of soil: a new world of interactions under our feet? Soil Syst. 3, 45 (2019).

    Google Scholar 

  74. Smolka, M. et al. A mobile lab-on-a-chip device for on-site soil nutrient analysis. Precision Agric. 18, 152–168 (2017).

    Google Scholar 

  75. Rossel, R. A. V. & Bouma, J. Soil sensing: a new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).

    Google Scholar 

  76. Ali, M. A., Dong, L., Dhau, J., Khosla, A. & Kaushik, A. Perspective — electrochemical sensors for soil quality assessment. J. Electrochem. Soc. 167, 037550 (2020).

    Google Scholar 

  77. Enell, A. et al. Combining leaching and passive sampling to measure the mobility and distribution between porewater, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil. Environ. Sci. Technol. 50, 11797–11805 (2016).

    Google Scholar 

  78. Sismaet, H. J. & Goluch, E. D. Electrochemical probes of microbial community behaviour. Annu. Rev. Anal. Chem. 11, 441–461 (2018).

    Google Scholar 

  79. Chabrillat, S. et al. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 40, 361–399 (2019).

    Google Scholar 

  80. Mohanty, B. P., Cosh, M. H., Lakshmi, V. & Montzka, C. Soil moisture remote sensing: state-of-the-science. Vadose Zone J. 16, 1–9 (2017).

    Google Scholar 

  81. Paustian, K. et al. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manage. 10, 567–587 (2019).

    Google Scholar 

  82. Duckett, T. et al. Agricultural robotics: the future of robotic agriculture. Preprint arXiv https://arxiv.org/abs/1806.06762 (2018).

  83. Hussain, I., Olson, K. R., Wander, M. M. & Karlen, D. L. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Tillage Res. 50, 237–249 (1999).

    Google Scholar 

  84. Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589–601 (2017).

    Google Scholar 

  85. Svoray, T., Hassid, I., Atkinson, P. M., Moebius-Clune, B. N. & van Es, H. M. Mapping soil health over large agriculturally important areas. Soil Sci. Soc. Am. J. 79, 1420–1434 (2015).

    Google Scholar 

  86. Moebius-Clune, B. N. et al. Comprehensive Assessment of Soil Health – The Cornell Framework, Edition 3.1 (Cornell Univ. Press, 2016).

  87. Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).

    Google Scholar 

  88. Lima, A. C. R., Brussaard, L., Totola, M. R., Hoogmoed, W. B. & de Goede, R. G. M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 64, 194–200 (2013).

    Google Scholar 

  89. Verheijen, F. G., Bellamy, P. H., Kibblewhite, M. G. & Gaunt, J. L. Organic carbon ranges in arable soils of England and Wales. Soil Use Manage. 21, 2–9 (2005).

    Google Scholar 

  90. Bucka, F. B., Kölbl, A., Uteau, D., Peth, S. & Kögel-Knabner, I. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma 354, 113881 (2019).

    Google Scholar 

  91. Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 6, 33696 (2016).

    Google Scholar 

  92. Jordan-Meille, L. et al. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soil Use Manage. 28, 419–435 (2012).

    Google Scholar 

  93. McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. Bioscience 68, 194–203 (2018).

    Google Scholar 

  94. Brevik, E. C. & Sauer, T. J. The past, present, and future of soils and human health studies. Soil 1, 35–46 (2015).

    Google Scholar 

  95. Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).

    Google Scholar 

  96. Bampa, F. et al. Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manage. 35, 6–20 (2019).

    Google Scholar 

  97. Schulte, R. P. et al. Demands on land: mapping competing societal expectations for the functionality of agricultural soils in Europe. Environ. Sci. Policy 100, 113–125 (2019).

    Google Scholar 

  98. Ward, M. O., Grinstein, G. & Keim, D. Interactive Data Visualization: Foundations, Techniques, and Applications (AK Peters/CRC Press, 2015).

  99. Villamil, M. B., Miguez, F. E. & Bollero, G. A. Multivariate analysis and visualization of soil quality data for no-till systems. J. Environ. Qual. 37, 2063–2069 (2008).

    Google Scholar 

  100. Börner, K., Bueckle, A. & Ginda, M. Data visualization literacy: definitions, conceptual frameworks, exercises, and assessments. Proc. Natl Acad. Sci. USA 116, 1857–1864 (2019).

    Google Scholar 

  101. Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Google Scholar 

  102. Tian, R. & Wu, J. Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in Northwest China. Hum. Ecol. Risk Assess. Int. J. 25, 132–157 (2019).

    Google Scholar 

  103. Finger, R., Swinton, S. M., Benni, N. E. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).

    Google Scholar 

  104. van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E. R. & Manlove, S. Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning. Comput. Hum. Behav. 21, 671–688 (2005).

    Google Scholar 

  105. Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03 (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).

  106. Haberern, J. A soil health index. J. Soil Water Conserv. 47, 6 (1992).

    Google Scholar 

  107. Pankhurst, C. E. et al. Evaluation of soil biological properties as potential bioindicators of soil health. Austr. J. Exp. Agric. 35, 1015–1028 (1995).

    Google Scholar 

  108. Doran, J. W. & Zeiss, M. R. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).

    Google Scholar 

  109. Winiwarter, V. & Blum, W. E. in Footprints in the Soil. People and Ideas in Soil History (ed. Warkentin, B.) 107–122 (Elsevier, 2006).

  110. Capra, G. F., Ganga, A. & Moore, A. F. Songs for our soils. How soil themes have been represented in popular song. Soil Sci. Plant Nutr. 63, 517–525 (2017).

    Google Scholar 

  111. Jenny, H. in Study Week on Organic Matter and Soil Fertility. Pontificiae Academiae Scientarium Scripta, Varia 32. 947–979 (North Holland Publ. Co and Wiley Interscience Division, 1968).

  112. Feller, C., Landa, E. R., Toland, A. & Wessolek, G. Case studies of soil in art. Soil 1, 543–559 (2015).

    Google Scholar 

  113. Brevik, E. C. & Hartemink, A. E. Early soil knowledge and the birth and development of soil science. Catena 83, 23–33 (2010).

    Google Scholar 

  114. Carson, R. Silent Spring (Houghton Mifflin, 1962).

  115. Lovelock, J. E. Gaia, a New Look at Life on Earth (Oxford Univ. Press, 1979).

  116. Keesstra, S. D. et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2, 111–128 (2016).

    Google Scholar 

  117. Mausel, P. W. Soil quality in Illinois — an example of a soils geography resource analysis. Prof. Geogr. 23, 127–136 (1971).

    Google Scholar 

  118. Sojka, R. E. & Upchurch, D. R. Reservations regarding the soil quality concept. Soil Sci. Soc. Am. J. 63, 1039–1054 (1999).

    Google Scholar 

  119. Rumpel, C. et al. Put more carbon in soils to meet Paris climate pledges. Nature 564, 32–34 (2018).

    Google Scholar 

  120. Freidberg, S. Assembled but unrehearsed: corporate food power and the ‘dance’ of supply chain sustainability. J. Peasant Stud. 47, 383–400 (2020).

    Google Scholar 

  121. Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).

    Google Scholar 

  122. Puig de la Bellacasa, M. Re-animating soils: transforming human–soil affections through science, culture and community. Sociol. Rev. 67, 391–407 (2019).

    Google Scholar 

Download references

Acknowledgements

J.L. acknowledges the Hans Fischer Senior Fellowship of the Institute for Advanced Study (Technical University Munich) and a TNC-ACSF project (Cornell University), D.A.B. the support by the Craig and Susan McCaw Foundation, I.K.-K. the support by the German Federal Ministry of Education and Research (BMBF) in the framework of the funding measure ‘Soil as a Sustainable Resource for the Bioeconomy’ (BonaRes project), BonaRes Centre for Soil Research (FKZ 031B0516A; BonaRes, Module A) and M.C.R. an ERC Advanced Grant (694368) and the BMBF for the project ‘Bridging in Biodiversity Science (BIBS)’ (01LC1501A). Sincere thanks to Else Bünemann-König for sharing raw data.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantial discussion of content, edited the manuscript and its revisions.

Corresponding author

Correspondence to Johannes Lehmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Hailin Zhang, Nanthi Bolan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, J., Bossio, D.A., Kögel-Knabner, I. et al. The concept and future prospects of soil health. Nat Rev Earth Environ 1, 544–553 (2020). https://doi.org/10.1038/s43017-020-0080-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-020-0080-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing