Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Komatiites reveal a hydrous Archaean deep-mantle reservoir

Abstract

Archaean komatiites (ultramafic lavas) result from melting under extreme conditions of the Earth’s mantle. Their chemical compositions evoke very high eruption temperatures, up to 1,600 degrees Celsius, which suggests even higher temperatures in their mantle source1,2. This message is clouded, however, by uncertainty about the water content in komatiite magmas. One school of thought holds that komatiites were essentially dry and originated in mantle plumes3,4,5,6 while another argues that these magmas contained several per cent water, which drastically reduced their eruption temperature and links them to subduction processes7,8,9. Here we report measurements of the content of water and other volatile components, and of major and trace elements in melt inclusions in exceptionally magnesian olivine (up to 94.5 mole per cent forsterite). This information provides direct estimates of the composition and crystallization temperature of the parental melts of Archaean komatiites. We show that the parental melt for 2.7-billion-year-old komatiites from the Abitibi greenstone belt in Canada contained 30 per cent magnesium oxide and 0.6 per cent water by weight, and was depleted in highly incompatible elements. This melt began to crystallize at around 1,530 degrees Celsius at shallow depth and under reducing conditions, and it evolved via fractional crystallization of olivine, accompanied by minor crustal assimilation. As its major- and trace-element composition and low oxygen fugacities are inconsistent with a subduction setting, we propose that its high H2O/Ce ratio (over 6,000) resulted from entrainment into the komatiite source of hydrous material from the mantle transition zone10. These results confirm a plume origin for komatiites and high Archaean mantle temperatures, and evoke a hydrous reservoir in the deep mantle early in Earth’s history.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystallization temperatures and H2O contents in melt versus olivine composition of Abitibi komatiites.
Figure 2: Compositions and oxygen fugacity of komatiite melt and coexisting olivine.
Figure 3: Incompatible element compositions of primary and evolved melts.
Figure 4: Cartoon illustrating a hot Archaean plume passing through the mantle transition zone at 410–660 km depth.

References

  1. Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. Solid Earth 97, 4521–4540 (1992)

    CAS  Google Scholar 

  2. Nisbet, E. G., Cheadle, M. J., Arndt, N. T. & Bickle, M. J. Constraining the potential temperature of the Archean mantle—a review of the evidence from komatiites. Lithos 30, 291–307 (1993)

    ADS  CAS  Google Scholar 

  3. Arndt, N. et al. Were komatiites wet? Geology 26, 739–742 (1998)

    ADS  CAS  Google Scholar 

  4. Campbell, I. H., Griffiths, R. W. & Hill, R. I. Melting in an Archean mantle plume—heads it’s basalts, tails it’s komatiites. Nature 339, 697–699 (1989)

    ADS  CAS  Google Scholar 

  5. Herzberg, C. et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem. Geophys. Geosyst. 8, Q02006 (2007)

    ADS  Google Scholar 

  6. McDonough, W. F. & Ireland, T. R. Intraplate origin of komatiites inferred from trace-elements in glass inclusions. Nature 365, 432–434 (1993)

    ADS  CAS  Google Scholar 

  7. Allègre, C. J. in Komatiites (eds Arndt, N. T. & Nisbet, E. G. ) 495–500 (George Allen and Unwin, 1982)

  8. Grove, T. L. & Parman, S. W. Thermal evolution of the Earth as recorded by komatiites. Earth Planet. Sci. Lett. 219, 173–187 (2004)

    ADS  CAS  Google Scholar 

  9. Parman, S. W., Grove, T. L., Dann, J. C. & de Wit, M. J. A subduction origin for komatiites and cratonic lithospheric mantle. S. Afr. J. Geol. 107, 107–118 (2004)

    Google Scholar 

  10. Bercovici, D. & Karato, S. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003)

    ADS  CAS  PubMed  Google Scholar 

  11. Lahaye, Y. & Arndt, N. Alteration of a komatiite flow from Alexo, Ontario, Canada. J. Petrol. 37, 1261–1284 (1996)

    ADS  CAS  Google Scholar 

  12. Pyke, D. R., Naldrett, A. J. & Eckstrand, O. R. Archean ultramafic flows in Munro township, Ontario. Geol. Soc. Am. Bull. 84, 955–977 (1973)

    ADS  CAS  Google Scholar 

  13. Puchtel, I. S., Walker, R. J., Brandon, A. D. & Nisbet, E. G. Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochim. Cosmochim. Acta 73, 6367–6389 (2009)

    ADS  CAS  Google Scholar 

  14. Kamenetsky, V. S., Sobolev, A. V., Eggins, S. M., Crawford, A. J. & Arculus, R. J. Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched components. Chem. Geol. 183, 287–303 (2002)

    ADS  CAS  Google Scholar 

  15. Portnyagin, M., Almeev, R., Matveev, S. & Holtz, F. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet. Sci. Lett. 272, 541–552 (2008)

    ADS  CAS  Google Scholar 

  16. Lahaye, Y., Barnes, S. J., Frick, L. R. & Lambert, D. D. Re-Os isotopic study of komatiitic volcanism and magmatic sulfide formation in the southern Abitibi greenstone belt, Ontario, Canada. Can. Mineral. 39, 473–490 (2001)

    CAS  Google Scholar 

  17. Evans, K. A., Elburg, M. A. & Kamenetsky, V. Oxidation state of subarc mantle. Geology 40, 783–786 (2012)

    ADS  Google Scholar 

  18. Kent, A. J. R., Norman, M. D., Hutcheon, I. D. & Stolper, E. M. Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem. Geol. 156, 299–319 (1999)

    ADS  CAS  Google Scholar 

  19. Gurenko, A. A. & Kamenetsky, V. S. Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: new evidence supporting wet komatiite origin. Earth Planet. Sci. Lett. 312, 201–212 (2011)

    ADS  CAS  Google Scholar 

  20. Ford, C. E., Russell, D. G., Craven, J. A. & Fisk, M. R. Olivine liquid equilibria—temperature, pressure and composition dependence of the crystal liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J. Petrol. 24, 256–266 (1983)

    ADS  CAS  Google Scholar 

  21. Herzberg, C. & O'Hara, M. J. Plume-associated ultramafic magmas of phanerozoic age. J. Petrol. 43, 1857–1883 (2002)

    ADS  CAS  Google Scholar 

  22. Herzberg, C. & Asimow, P. D. PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem. Geophys. Geosyst. 16, 563–578 (2015)

    ADS  CAS  Google Scholar 

  23. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010)

    ADS  CAS  Google Scholar 

  24. Herzberg, C. & Gazel, E. Petrological evidence for secular cooling in mantle plumes. Nature 458, 619–622 (2009)

    ADS  CAS  PubMed  Google Scholar 

  25. Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J. G. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002)

    ADS  CAS  PubMed  Google Scholar 

  26. Mibe, K., Orihashi, Y., Nakai, S. i. & Fujii, T. Element partitioning between transition-zone minerals and ultramafic melt under hydrous conditions. Geophys. Res. Lett. 33, L16307 (2006)

    ADS  Google Scholar 

  27. Roberge, M. et al. Is the transition zone a deep reservoir for fluorine? Earth Planet. Sci. Lett. 429, 25–32 (2015)

    ADS  CAS  Google Scholar 

  28. Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224 (2014)

    ADS  CAS  PubMed  Google Scholar 

  29. Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    ADS  PubMed  Google Scholar 

  30. Falloon, T. J. & Danyushevsky, L. V. Melting of refractory mantle at 1.5, 2 and 2.5 GPa under, anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J. Petrol. 41, 257–283 (2000)

    ADS  CAS  Google Scholar 

  31. Ribeiro, J. M. et al. Composition of the slab-derived fluids released beneath the Mariana forearc: evidence for shallow dehydration of the subducting plate. Earth Planet. Sci. Lett. 418, 136–148 (2015)

    ADS  CAS  Google Scholar 

  32. Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988)

    ADS  CAS  Google Scholar 

  33. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998)

    ADS  CAS  Google Scholar 

  34. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007)

    ADS  CAS  PubMed  Google Scholar 

  35. Batanova, V. G., Sobolev, A. V. & Kuzmin, D. V. Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem. Geol. 419, 149–157 (2015)

    ADS  CAS  Google Scholar 

  36. Jochum, K. P. et al. MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. 7, Q02008 (2006)

    ADS  Google Scholar 

  37. Batanova, V. G., Belousov, I. A., Savelieva, G. N. & Sobolev, A. V. Consequences of channelized and diffuse melt transport in supra-subduction mantle: evidence from Voykar ophiolite (Polar Urals). J. Petrol. 52, 2483–2521 (2011)

    ADS  CAS  Google Scholar 

  38. Rosner, M. & Meixner, A. Boron isotopic composition and concentration of ten geological reference materials. Geostand. Geoanal. Res. 28, 431–441 (2004)

    CAS  Google Scholar 

  39. Spivack, A. J. & Edmond, J. M. Determination of boron isotope ratios by thermal ionization mass-spectrometry of the dicesium metaborate cation. Anal. Chem. 58, 31–35 (1986)

    CAS  Google Scholar 

  40. Sobolev, A. V. & Danyushevsky, L. V. Petrology and geochemistry of boninites from the North termination of the Tonga trench–constraints on the generation conditions of primary high-Ca boninite magmas. J. Petrol. 35, 1183–1211 (1994)

    ADS  Google Scholar 

  41. Wallace, P. J., Kamenetsky, V. S. & Cervantes, P. Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. Am. Mineral. 100, 787–794 (2015)

    ADS  Google Scholar 

  42. Mironov, N. et al. Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet. Sci. Lett. 425, 1–11 (2015)

    ADS  CAS  Google Scholar 

  43. Danyushevsky, L. V., Sokolov, S. & Falloon, T. J. Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J. Petrol. 43, 1651–1671 (2002)

    ADS  CAS  Google Scholar 

  44. Danyushevsky, L. V. & Plechov, P. Petrolog3: integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst. 12, Q07021 (2011)

    ADS  Google Scholar 

  45. Brown, P. E. FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data. Am. Mineral. 74, 1390–1393 (1989)

    Google Scholar 

  46. Newman, S. & Lowenstern, J. B. VOLATILECALC: a silicate melt-H2O-CO2 solution model written in Visual Basic for Excel. Comput. Geosci. 28, 597–604 (2002)

    ADS  CAS  Google Scholar 

  47. Mallmann, G. & O'Neill, H. S. Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J. Petrol. 54, 933–949 (2013)

    ADS  CAS  Google Scholar 

  48. Coogan, L. A., Saunders, A. D. & Wilson, R. N. Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 368, 1–10 (2014)

    ADS  CAS  Google Scholar 

  49. Médard, E. & Grove, T. L. The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib. Mineral. Petrol. 155, 417–432 (2008)

    ADS  Google Scholar 

  50. Almeev, R. R., Holtz, F., Koepke, J., Parat, F. & Botcharnikov, R. E. The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am. Mineral. 92, 670–674 (2007)

    ADS  CAS  Google Scholar 

  51. Fan, J. & Kerrich, R. Geochemical characteristics of aluminum depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, Western Abitibi greenstone belt: A heterogeneous mantle plume convergent margin environment. Geochim. Cosmochim. Acta. 61, 4723–4744 (1997)

    ADS  CAS  Google Scholar 

  52. Mallmann, G. & O’Neill, H. S. C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J. Petrol. 50, 1765–1794 (2009)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Kadik, A. Borisov and A. Kargal’tsev for their assistance in high-temperature experiments, V. Magnin for assistance in maintenance of the EPMA laboratory, U. Westernströer for help with laser-ablation ICP-MS measurements, and V. Kamenetsky for providing sample 41F of the Cape Vogel boninites. The paper benefited greatly from the constructive reviews of C. Herzberg and I. Puchtel and the comments of S. Sobolev. This study was funded by the Russian Science Foundation grant number 14-17-00491 (to A.V.S.). The EPMA facility in ISTerre was established and maintained by funds of the Agence Nationale de la Recherche, France, the Chair of Excellence grant ANR-09-CEXC-003-01 and partly by CNRS and Labex OSUG@2020 (Investissements d’avenir—ANR10 LABX56). A.V.S. acknowledges the support of Institut Universitaire de France and the Deep Carbon Observatory. The costs of SIMS analyses were covered by CRPG (A.A.G.’s internal funds). This is CRPG contribution number 2430.

Author information

Authors and Affiliations

Authors

Contributions

A.V.S. designed the study, participated in sample collection, data processing and interpretation, and wrote the paper. E.V.A. participated in sample collection, found and prepared melt inclusions in olivines, conducted EPMA analyses and participated in the data processing and interpretation. A.A.G. performed SIMS analyses and participated in data interpretation and writing the paper. N.T.A. led the field work and sample collection, participated in data interpretation and co-authored the paper. V.G.B. managed the EPMA analyses. M.V.P. performed the laser-ablation ICP-MS analyses and participated in data interpretation and writing the paper. D.G.-S. managed the laser-ablation ICP-MS analyses. S.P.K. conducted the heating experiments. All authors discussed the results, problems or methods and participated in preparation of the paper.

Corresponding author

Correspondence to Alexander V. Sobolev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A copy of the Supplementary Information has been submitted to Researchgate (https://www.researchgate.net/profile/Alexander_Sobolev) and GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/) databases.

Extended data figures and tables

Extended Data Figure 1 Melt inclusions in olivine from Abitibi belt komatiites.

a, Back-scattered electron image of partly crystallized (unheated) melt inclusion 823-th-ol8 in olivine (ol) of Alexo flow sample M823. The inclusion is composed of glass, quenched clinopyroxene (cpx), spinel (spl) and gas bubble. b, Heated and quenched melt inclusion (810-7-ol1) in olivine from Pyke Hill komatiite sample M810. The inclusion contains glass, gas bubble and spinel. c, Heated and quenched melt inclusion (810-9-ol16) in olivine from Pyke Hill komatiite sample M810. The inclusion contains glass, gas bubble and spinel. d, Back-scattered electron image of the inclusion in c.

Extended Data Table 1 Representative and average compositions of olivine-hosted melt inclusions and primary melt of the Abitibi belt komatiites

Supplementary information

Supplementary Tables

This file contains Supplementary Tables 1–5. This file was replaced on 31 March 2016 to correct a formatting error. Supplementary Table 4 was replaced on 6 June 2016 to correct typos in sample 823. (XLSX 203 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, A., Asafov, E., Gurenko, A. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632 (2016). https://doi.org/10.1038/nature17152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature17152

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing