Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni

Abstract

How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours1. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries—for example, XTE J1118+480 (ref. 4) and GX 339−4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source6 containing a black hole of nine solar masses7 (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought1. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion—not the actual rate—would then be the critical factor causing large-amplitude oscillations in long-period systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall multi-colour light curves during the 2015 outburst of V404 Cyg.
Figure 2: Short-term and large-amplitude optical variations having repeating structures in the 2015 outburst of V404 Cyg.
Figure 3: Correlation between optical and X-ray fluctuations of V404 Cyg in the 2015 outburst.
Figure 4: The bolometric luminosity Lbol of V404 Cyg during the 2015 outburst.

Similar content being viewed by others

References

  1. Janiuk, A. & Czerny, B. On different types of instabilities in black hole accretion discs: implications for X-ray binaries and active galactic nuclei. Mon. Not. R. Astron. Soc. 414, 2186–2194 (2011)

    ADS  Google Scholar 

  2. Fender, R. P. & Belloni, T. GRS 1915+105 and the disc-jet coupling in accreting black hole systems. Annu. Rev. Astron. Astrophys. 42, 317–364 (2004)

    ADS  CAS  Google Scholar 

  3. Belloni, T., Klein-Wolt, M., Méndez, M., van der Klis, M. & van Paradijs, J. A model-independent analysis of the variability of GRS 1915+105. Astron. Astrophys. 355, 271–290 (2000)

  4. Hynes, R. I. et al. The remarkable rapid X-ray, ultraviolet, optical and infrared variability in the black hole XTE J1118+480. Mon. Not. R. Astron. Soc. 345, 292–310 (2003)

    ADS  Google Scholar 

  5. Motch, C., Ilovaisky, S. A. & Chevalier, C. Discovery of fast optical activity in the X-ray source GX 339−4. Astron. Astrophys. 109, L1–L4 (1982)

    ADS  Google Scholar 

  6. Tanaka, Y. & Shibazaki, N. X-ray novae. Annu. Rev. Astron. Astrophys. 34, 607–644 (1996)

    ADS  Google Scholar 

  7. Khargharia, J., Froning, C. S. & Robinson, E. L. Near-infrared spectroscopy of low-mass X-ray binaries: accretion disk contamination and compact object mass determination in V404 Cyg and Cen X-4. Astrophys. J. 716, 1105–1117 (2010)

    ADS  CAS  Google Scholar 

  8. Miller-Jones, J. C. A. et al. The first accurate parallax distance to a black hole. Astrophys. J. 706, L230–L234 (2009)

    ADS  Google Scholar 

  9. Makino, F. GS 2023+338. IAU Circ . 4782 (1989)

  10. Barthelmy, S. D. et al. Swift trigger 643949 is V404 Cyg. GRB Coord. Netw. Circ . 17929 (2015)

  11. Negoro, H. et al. MAXI/GSC detection of a new outburst from the Galactic black hole candidate GS 2023+338 (V* V404 Cyg). Astron. Telegr. 7646 (2015)

  12. Chen, Y. T. et al. TAOS early optical observations of V404 Cyg. Astron. Telegr. 7722 (2015)

  13. Golenetskii, S. et al. Konus-Wind observation of Galactic transient V404 Cyg in outburst. GRB Coord. Netw. Circ. 17938 (2015)

  14. Uemura, M. et al. Rapid optical fluctuations in the black hole binary V4641 Sagittarii. Publ. Astron. Soc. Jpn 54, L79–L82 (2002)

    ADS  Google Scholar 

  15. Z. ycki, P. T., Done, C. & Smith, D. A. The 1989 May outburst of the soft X-ray transient GS 2023+338 (V404 Cyg). Mon. Not. R. Astron. Soc. 309, 561–575 (1999)

    ADS  Google Scholar 

  16. Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. An unstable central disk in the superluminal black hole X-ray binary GRS 1915+105. Astrophys. J. 479 , L145–L148 (1997)

    ADS  Google Scholar 

  17. Neilsen, J., Remillard, R. A. & Lee, J. C. The physics of the “heartbeat” state of GRS 1915+105. Astrophys. J. 737 , 69–108 (2011)

    ADS  Google Scholar 

  18. Altamirano, D. et al. The faint “heartbeats” of IGR J17091−3624: an exceptional black hole candidate. Astrophys. J. 742, L17–L23 (2011)

    ADS  Google Scholar 

  19. Osaki, Y. Dwarf-nova outbursts. Publ. Astron. Soc. Pacif. 108, 39–60 (1996)

    ADS  Google Scholar 

  20. Steeghs, D. et al. The not-so-massive black hole in the microquasar GRS 1915+105. Astrophys. J. 768 , 185–191 (2013)

    ADS  Google Scholar 

  21. Janiuk, A., Grzedzielski, M., Capitanio, F. & Bianchi, S. Interplay between heartbeat oscillations and wind outflow in microquasar IGR J17091−3624. Astron. Astrophys. 574, A92–A102 (2015)

    ADS  Google Scholar 

  22. Casares, J., Charles, P. A. & Naylor, T. A 6.5-day periodicity in the recurrent nova V404 Cygni implying the presence of a black hole. Nature 355, 614–617 (1992)

    ADS  Google Scholar 

  23. Orosz, J. A. et al. A black hole in the superluminal source SAX J1819.3−2525 (V4641 Sgr). Astrophys. J. 555, 489–503 (2001)

    ADS  CAS  Google Scholar 

  24. Bagnoli, T. & in’t Zand, J. J. M. Discovery of GRS 1915+105 variability patterns in the rapid burster. Mon. Not. R. Astron. Soc. 450 , L52–L56 (2015)

    ADS  CAS  Google Scholar 

  25. Hameury, J.-M., Menou, K., Dubus, G., Lasota, J.-P. & Hure, J.-M. Accretion disc outbursts: a new version of an old model. Mon. Not. R. Astron. Soc. 298, 1048–1060 (1998)

    ADS  Google Scholar 

  26. Panopoulou, G., Reig, P. & Blinov, D. Optical polarization of V404 Cyg. Astron. Telegr. 7674 (2015)

  27. Itoh, R. et al. Optical and near-infrared polarimetry for V404 Cyg with 1.6m Pirka and 1.5m Kanata telescopes in Japan. Astron. Telegr. 7709 (2015)

  28. Lasota, J.-P. The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astron. Rev. 45, 449–508 (2001)

    ADS  CAS  Google Scholar 

  29. Kim, S.-W., Wheeler, J. C. & Mineshige, S. Disk instability and outburst properties of the intermediate polar GK Persei. Astrophys. J. 384, 269–283 (1992)

    ADS  Google Scholar 

  30. King, A. R. & Ritter, H. The light curves of soft X-ray transients. Mon. Not. R. Astron. Soc. 293, L42–L48 (1998)

    ADS  Google Scholar 

  31. Kato, T. et al. Variable Star Network: world center for transient object astronomy and variable stars. Publ. Astron. Soc. Jpn 56, S1–S54 (2004)

    ADS  Google Scholar 

  32. Muyllaert, E. V404 Cyg going into outburst!? BAAVSS Alert 4101 (2015); https://groups.yahoo.com/neo/groups/baavss-alert/conversations/messages/4101

  33. AAVSO American Association of Variable Star Observers. Download data. http://www.aavso.org/data-download/ (accessed 4 July 2015)

  34. Lehner, M. J. et al. The Taiwanese-American Occultation Survey: the multi-telescope robotic observatory. Publ. Astron. Soc. Pacif. 121, 138–152 (2009)

    ADS  Google Scholar 

  35. AAVSO American Association of Variable Star Observers. Variable star plotter. http://www.aavso.org/vsp (accessed 4 July 2015)

  36. Gandhi, P. et al. Correlated optical and X-ray variability in V404 Cyg. Astron. Telegr. 7727 (2015)

  37. Lewin, W. H. G. et al. The discovery of rapidly repetitive X-ray bursts from a new source in Scorpius. Astrophys. J. 207, L95–L99 (1976)

    ADS  Google Scholar 

  38. Bagnoli, T., in’t Zand, J. J. M., Galloway, D. K. & Watts, A. L. Indications for a slow rotator in the Rapid Burster from its thermonuclear bursting behaviour. Mon. Not. R. Astron. Soc. 431, 1947–1955 (2013)

    ADS  Google Scholar 

  39. Goranskij, V. P. Variable stars in Sagittarius. Astronomicheskii Tsirkulyar 1024, 3–4 (1978)

    ADS  Google Scholar 

  40. Samus, N. N. et al. V4641 Sagittarii and GM Sagittarii. IAU Circ. 7277 (1999)

  41. Stubbings, R. et al. GM Sagittarii and SAX J1819.3−2525 = XTE J1819−254. IAU Circ . 7253 (1999)

  42. Kato, T., Uemura, M., Stubbings, R., Watanabe, T. & Monard, B. Preoutburst activity of V4641 Sgr = SAX J1819.3−2525: possible existence of 2.5-day period. Inform. Bull. Variable Stars 4777 (1999)

  43. Hjellming, R. M. et al. Light curves and radio structure of the 1999 September transient event in V4641 Sagittarii (=XTE J1819−254 = SAX J1819.3−2525). Astrophys. J. 544, 977–992 (2000)

  44. Uemura, M. et al. The 1999 optical outburst of the fast X-ray nova, V4641 Sagittarii. Publ. Astron. Soc. Jpn 54, 95–101 (2002)

    ADS  Google Scholar 

  45. Uemura, M. et al. Outburst and post-outburst active phase of the black hole X-ray binary, V4641 Sgr in 2002. Publ. Astron. Soc. Jpn 56, S61–S75 (2004)

    Google Scholar 

  46. Uemura, M. et al. Optical observation of the 2003 outburst of a black hole X-ray binary, V4641 Sagittarii. Publ. Astron. Soc. Jpn 56, 823–829 (2004)

    ADS  CAS  Google Scholar 

  47. Uemura, M. et al. Outburst of a black hole X-ray binary V4641 Sgr in 2004 July. Inform. Bull. Variable Stars 5626, 1–4 (2005)

    ADS  Google Scholar 

  48. Revnivtsev, M., Sunyaev, R., Gilfanov, M. & Churazov, E. V4641 Sgr — a super-Eddington source enshrouded by an extended envelope. Astron. Astrophys. 385, 904–908 (2002)

    ADS  Google Scholar 

  49. Mirabel, I. F. & Rodrguez, L. F. Sources of relativistic jets in the Galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999)

    ADS  Google Scholar 

  50. Imamura, J. N., Kristian, J., Middleditch, J. & Steiman-Cameron, T. Y. The 8 second optical quasi-periodic oscillations in GX 339−4. Astron. Astrophys. 365, 312–316 (1990)

    ADS  Google Scholar 

  51. Casares, J., Charles, P. A., Jones, D. H. P., Rutten, R. G. M. & Callanan, P. J. Optical studies of V404 Cyg, the X-ray transient GS 2023+338. I — the 1989 outburst and decline. Mon. Not. R. Astron. Soc. 250, 712–725 (1991)

    ADS  CAS  Google Scholar 

  52. Wagner, R. M. et al. Optical identification of the X-ray source GS 2023+338 as V404 Cygni. Astrophys. J. 378, 293–297 (1991)

    ADS  CAS  Google Scholar 

  53. Chevalier, C. & Ilovaisky, S. A. CCD photometry of GRO J0422+32 during activity and quiescence. Astron. Astrophys. 297, 103–114 (1995)

    ADS  Google Scholar 

  54. Whelan, J. A. J. et al. Spectroscopic observations of the X-ray nova A0620−00. Mon. Not. R. Astron. Soc. 180, 657–673 (1977)

    ADS  CAS  Google Scholar 

  55. Hynes, R. I., Robinson, E. L. & Morales, J. Rapid optical photometry of V404 Cyg. Astron. Telegr. 7677 (2015)

  56. Gandhi, P. et al. Sub-second multi-band optical timing of V404 Cyg with ULTRACAM. Astron. Telegr. 7686 (2015)

  57. Hynes, R. I., Robinson, E. L. & Morales, J. Further rapid optical photometry of V404 Cyg. Astron. Telegr. 7710 (2015)

  58. Cannizzo, J. K. On the relative rates of decay of the optical and soft X-ray fluxes in dwarf nova outbursts. Astrophys. J. 473, L41–L44 (1996)

    ADS  Google Scholar 

  59. Meyer, F. Transition waves in accretion disks. Astron. Astrophys. 131, 303–308 (1984)

    ADS  Google Scholar 

  60. Cannizzo, J. K., Smale, A. P., Wood, M. A., Still, M. D. & Howell, S. B. The Kepler light curves of V1504 Cygni and V344 Lyrae: a study of the outburst properties. Astrophys. J. 747, 117–128 (2012)

    ADS  Google Scholar 

  61. Savoury, C. D. J. et al. Cataclysmic variables below the period gap: mass determinations of 14 eclipsing systems. Mon. Not. R. Astron. Soc. 415, 2025–2041 (2011)

    ADS  Google Scholar 

  62. Munoz-Darias, T., Sanchez, D. M. & Casares, J. Optical spectroscopy of V404 Cyg: evolution of the P Cygni profiles. Astron. Telegr. 7669 (2015)

  63. Caballero-Garcia, M. D., Castro-Tirado, A. J., Oates, S. & Jeong, S. Early optical spectroscopy follow-up of V404 Cyg with GTC/OSIRIS. Astron. Telegr. 7699 (2015)

  64. Scarpaci, J., Maitra, D., Hynes, R. & Markoff, S. Multi-band optical observations of V404 Cygni and correlated spectral changes. Astron. Telegr. 7737 (2015)

  65. Casares, J., Charles, P. A., Naylor, T. & Pavlenko, E. P. Optical studies of V404 Cygni the X-ray transient GS 2023+338 – part three – the secondary star and accretion disc. Mon. Not. R. Astron. Soc. 265, 834–852 (1993)

    ADS  CAS  Google Scholar 

  66. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)

    ADS  CAS  Google Scholar 

  67. Bohlin, R. C., Savage, B. D. & Drake, J. F. A survey of interstellar H I from Lα absorption measurements. II. Astrophys. J. 224, 132–142 (1978)

    ADS  CAS  Google Scholar 

  68. Trushkin, S. A., Nizhelskij, N. A. & Tybulev, P. G. The inverted radio spectrum of the flare in V404 Cyg. Astron. Telegr. 7667 (2015)

  69. Gies, D. R. et al. Stellar wind variations during the X-ray high and low states of Cygnus X-1. Astrophys. J. 678, 1237–1247 (2008)

    ADS  CAS  Google Scholar 

  70. Kaptein, R. G. et al. Discovery of 1RXS J171824.2−402934 as an X-ray burster. Astron. Astrophys. 358, L71–L74 (2000)

    ADS  Google Scholar 

  71. Hynes, R. I. et al. The quiescent spectral energy distribution of V404 Cyg. Mon. Not. R. Astron. Soc. 399, 2239–2248 (2009)

    ADS  CAS  Google Scholar 

  72. Osaki, Y. & Meyer, F. Early humps in WZ Sge stars. Astron. Astrophys. 383, 574–579 (2002)

    ADS  Google Scholar 

  73. Fender, R. P. Powerful jets from black hole X-ray binaries in low/hard X-ray states. Mon. Not. R. Astron. Soc. 322, 31–42 (2001)

    ADS  Google Scholar 

  74. Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979)

    ADS  CAS  Google Scholar 

  75. Corbel, S. & Fender, R. P. Near-infrared synchrotron emission from the compact jet of GX 339−4. Astrophys. J. 573, L35–L39 (2002)

    ADS  Google Scholar 

  76. Gandhi, P. et al. A variable mid-infrared synchrotron break associated with the compact jet in GX 339−4. Astrophys. J. 740, L13–L19 (2011)

    ADS  Google Scholar 

  77. Russell, T. D. et al. The accretion-ejection coupling in the black hole candidate X-ray binary MAXI J1836−194. Mon. Not. R. Astron. Soc. 439, 1390–1402 (2014)

    ADS  Google Scholar 

  78. INTEGRAL Science Data Centre. INTEGRAL data analysis. http://www.isdc.unige.ch/integral/analysis#QLAsources (8 August 2015)

  79. Wang, J. H. et al. Early optical brightening in GRB 071010B. Astrophys. J. 679, L5–L8 (2008)

    ADS  CAS  Google Scholar 

  80. Kloppenborg, B. K., Pieri, R., Eggenstein, H.-B., Maravelias, G. & Pearson, T. A demonstration of accurate wide-field V-band photometry using a consumer-grade DSLR camera. J. Am. Assoc. Variable Star Obs. 40, 815–833 (2012)

    ADS  Google Scholar 

  81. Alcock, C. et al. TAOS: The Taiwanese-American Occultation Survey. Earth Moon Planets 92, 459–464 (2003)

    ADS  Google Scholar 

  82. Zhang, Z.-W. et al. The TAOS project: results from seven years of survey data. Astron. J. 146, 14–23 (2013)

    ADS  Google Scholar 

  83. Casares, J. & Charles, P. A. Optical studies of V404 Cyg, the X-ray transient GS 2023+338. IV. the rotation speed of the companion star. Mon. Not. R. Astron. Soc. 271, L5–L9 (1994)

    ADS  Google Scholar 

  84. Wijnands, R., Yang, Y. J. & Altamirano, D. The enigmatic black hole candidate and X-ray transient IGR J17091−3624 in its quiescent state as seen with XMM-Newton. Mon. Not. R. Astron. Soc. 422, L91–L95 (2012)

    ADS  Google Scholar 

  85. Reid, M. J. et al. A parallax distance to the microquasar GRS 1915+105 and a revised estimate of its black hole mass. Astrophys. J. 796, 2–9 (2014)

    ADS  Google Scholar 

  86. Iyer, N., Nandi, A. & Mandal, S. Determination of the mass of IGR J17091−3624 from “spectro-temporal” variations during the onset phase of the 2011 outburst. Astrophys. J. 807, 108–116 (2015)

    ADS  Google Scholar 

  87. Sala, G. et al. Constraints on the mass and radius of the accreting neutron star in the Rapid Burster. Astrophys. J. 752, 158–164 (2012)

    ADS  Google Scholar 

  88. MacDonald, R. K. D. et al. The black hole binary V4641 Sagitarii: activity in quiescence and improved mass determinations. Astrophys. J. 784, 2–20 (2014)

    ADS  Google Scholar 

  89. Fender, R. P. et al. MERLIN observations of relativistic ejections from GRS 1915+105. Mon. Not. R. Astron. Soc. 304, 865–876 (1999)

    ADS  Google Scholar 

  90. King, A. L. et al. An extreme X-ray disk wind in the black hole candidate IGR J17091−3624. Astrophys. J. 746, L20–L24 (2012)

    ADS  Google Scholar 

  91. Szkody, P. et al. V404 Cygni. IAU Circ. 4794 (1989)

Download references

Acknowledgements

We acknowledge the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. We also thank the INTEGRAL groups for making the products of the ToO data public online at the INTEGRAL Science Data Centre. Work at ASIAA was supported in part by the thematic research program AS-88-TP-A02. A.S.P., E.D.M. and A.A.V. are grateful to the Russian Science Foundation (grant 15-12-30016) for support. R.Ya.I. is grateful for partial support by the grant RUSTAVELI FR/379/6-300/14. We thank H. Maehara, H. Akazawa, K. Hirosawa and J. Lluis for their optical observations. This work was supported by the Grant-in-Aid “Initiative for High-Dimensional Data-Driven Science through Deepening of Sparse Modeling” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (25120007 TK and 26400228 YU).

Author information

Authors and Affiliations

Authors

Contributions

M.K. led the campaign, performed optical data analysis and compiled all optical data. K.I. and A.I. performed optical data analysis. T.K., Y.U., D.N. and M.U. contributed to science discussions. S.N., M.S., T.E., T.H. and H.T. performed X-ray data analysis. Other authors than those mentioned above performed optical observations. M.K., K.I., T.K., Y.U., S.N., T.E., M.S. and A.I. wrote the manuscript. T.K., Y.U. and D.N. supervised this project. M.K., K.I., T.K., Y.U., T.E., M.S., D.N., C.L., R.I., M.J.L., F.B.B., D.K., E.P.P., A.S.P., I.E.M., M.R., E.M., W.L.S., S.K., L.M.C., A.I. and M.U. improved the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Mariko Kimura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Extended data figures and tables

Extended Data Figure 1 Optical and X-ray light curves of V404 Cyg during an outburst in 2015 June–July.

a, Overall multi-colour light curves and Swift/BAT light curves. The plotted points are averaged for every 0.67 days. b, An enlarged view of the shaded box in a (the first detection of short-term variations). On BJD 2,457,203, the mean magnitude dropped below V = 17.0. Superimposed on this rapid fading, the amplitude of variations became progressively smaller and smaller. After BJD 2,457,205, the mean magnitude seemed to be constant, and the outburst virtually ended.

Extended Data Figure 2 Additional examples of simultaneous optical and X-ray observations of V404 Cyg in the 2015 outburst.

Data shown in Fig. 3 are excluded. a, b, Main panels, correlations on BJD 2,457,192 (a) and BJD 2,457,200 (b); right panels, Swift/XRT light curves on linear scales. Navy blue error bars, ±1σ.

Extended Data Figure 3 Example of the soft X-ray light curve and spectra during the dip-type oscillation in the 2015 outburst of V404 Cyg.

a, The ~860-s-long Swift/XRT raw light curve (BJD 2,457,194.125–2,457,194.135, ObsID 00031403040) without pile-up correction, same as the X-ray data in Fig. 3a. b, Time-sliced soft X-ray spectra with pile-up correction, in the intervals of T1 to T5 determined in a. The exposures of individual spectra are ~100–300 s. Error bars, ±1σ.

Extended Data Figure 4 Comparison of the 1938, 1989 and 2015 outbursts of V404 Cyg.

The horizontal axis represents days BJD − 2,429,186, BJD − 2,447,673 and BJD − 2,457,189, respectively. Photographic magnitudes are approximately the same as B band.

Extended Data Figure 5 Power spectral densities of the early stage, the middle stage, and the later stage in the 2015 outburst of V404 Cyg.

Power spectral densities of the fluctuations on BJD 2,457,193 (top, circles), BJD 2,457,196 (middle, triangles) and BJD 2,457,200 (bottom, rectangles). The abscissa and ordinate denote the frequency in Hz and the power in arbitrary units, respectively. For better visualization, the obtained spectrum is multiplied by 8 × 10−4 on BJD 2,457,196 and by 10−4 on BJD 2,457,200. ±1σ error bars obtained from relevant χ2 distributions of the power spectra.

Extended Data Figure 6 Simultaneous, extinction-corrected multi-wavelength SEDs of V404 Cyg.

a, b, The intervals shown are BJD 2,457,199.431–2,457,199.446 (a) and BJD 2,457,191.519–2,457,191.524 (b). The optical (V and IC) fluxes are averaged over the intervals; error bars, s.e. The X-ray, U- and UW2-band data are obtained with Swift; error bars, ±1σ. The radio fluxes (open squares) are compiled from the RATAN-600 results at BJD 2,457,199.433 (ref. 68). The red solid and dotted lines show the contribution of emissions from the irradiated disk with Comptonization and from the companion star, respectively. The blue dashed line approximates the radio SED, which is extended to the optical bands for illustrative purposes.

Extended Data Table 1 A log of photometric observations of the 2015 outburst of V404 Cyg
Extended Data Table 2 List of instruments for optical observations
Extended Data Table 3 Basic information on objects showing violent short-term variations in outbursts

Supplementary information

The “twinkles” of the 2015 June-July outburst of V404 Cyg

This video shows the “twinkles” of a black hole (short-term and violent variations) in V404 Cyg on June 17 and 18 in 2015 with their image data and light curves. We use the images provided by LCO (Extended Data Table 1). We can see the “twinkles” of a black hole with the naked eyes using a moderate telescope. (MP4 6007 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, M., Isogai, K., Kato, T. et al. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni. Nature 529, 54–58 (2016). https://doi.org/10.1038/nature16452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16452

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing