Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Properties of galaxies reproduced by a hydrodynamic simulation

Abstract

Previous simulations of the growth of cosmic structures have broadly reproduced the ‘cosmic web’ of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the ‘metal’ and hydrogen content of galaxies on small scales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mock images of the simulated galaxy population.
Figure 2: Projected number density profile of satellite galaxies in galaxy clusters.
Figure 3: Neutral hydrogen and metal content of galaxies as a function of their stellar mass.
Figure 4: Large-scale characteristics of neutral hydrogen.
Figure 5: Nonlinear matter power spectrum.

Similar content being viewed by others

References

  1. Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Preprint at http://arxiv.org/abs/1303.5076 (2013)

  2. Katz, N. Dissipational galaxy formation. II — Effects of star formation. Astrophys. J. 391, 502–517 (1992)

    ADS  Google Scholar 

  3. Schaye, J. et al. The physics driving the cosmic star formation history. Mon. Not. R. Astron. Soc. 402, 1536–1560 (2010)

    ADS  Google Scholar 

  4. Brook, C. B., Stinson, G., Gibson, B. K., Wadsley, J. & Quinn, T. MaGICC discs: matching observed galaxy relationships over a wide stellar mass range. Mon. Not. R. Astron. Soc. 424, 1275–1283 (2012)

    ADS  CAS  Google Scholar 

  5. Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010)

    ADS  Google Scholar 

  6. Moustakas, J. et al. PRIMUS: Constraints on star formation quenching and galaxy merging, and the evolution of the stellar mass function from z = 0–1. Astrophys. J. 767, 50 (2013)

    ADS  Google Scholar 

  7. Navarro, J. F. & Steinmetz, M. Dark halo and disk galaxy scaling laws in hierarchical universes. Astrophys. J. 538, 477–488 (2000)

    ADS  CAS  Google Scholar 

  8. Scannapieco, C. et al. The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation. Mon. Not. R. Astron. Soc. 423, 1726–1749 (2012)

    ADS  Google Scholar 

  9. Illingworth, G. D. et al. The HST eXtreme Deep Field (XDF): combining all ACS and WFC3/IR data on the HUDF region into the deepest field ever. Astrophys. J. Suppl. Ser. 209, 6 (2013)

    ADS  Google Scholar 

  10. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19–L22 (1999)

    ADS  CAS  Google Scholar 

  11. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, L40–L44 (2011)

    ADS  Google Scholar 

  12. Hansen, S. M. et al. Measurement of galaxy cluster sizes, radial profiles, and luminosity functions from SDSS photometric data. Astrophys. J. 633, 122–137 (2005)

    ADS  CAS  Google Scholar 

  13. Budzynski, J. M., Koposov, S. E., McCarthy, I. G., McGee, S. L. & Belokurov, V. The radial distribution of galaxies in groups and clusters. Mon. Not. R. Astron. Soc. 423, 104–121 (2012)

    ADS  Google Scholar 

  14. Quilis, V. & Trujillo, I. Satellites around massive galaxies since z2: confronting the millennium simulation with observations. Astrophys. J. 752, L19 (2012)

    ADS  Google Scholar 

  15. Tal, T. et al. Galaxy environments over cosmic time: the non-evolving radial galaxy distributions around massive galaxies since z = 1.6. Astrophys. J. 769, 31 (2013)

    ADS  Google Scholar 

  16. Nagai, D. & Kravtsov, A. V. The radial distribution of galaxies in Λ cold dark matter clusters. Astrophys. J. 618, 557–568 (2005)

    ADS  Google Scholar 

  17. Saro, A. et al. Properties of the galaxy population in hydrodynamical simulations of clusters. Mon. Not. R. Astron. Soc. 373, 397–410 (2006)

    ADS  CAS  Google Scholar 

  18. Libeskind, N. I., Cole, S., Frenk, C. S., Okamoto, T. & Jenkins, A. Satellite systems around galaxies in hydrodynamic simulations. Mon. Not. R. Astron. Soc. 374, 16–28 (2007)

    ADS  Google Scholar 

  19. Hansen, S. M., Sheldon, E. S., Wechsler, R. H. & Koester, B. P. The galaxy content of SDSS clusters and groups. Astrophys. J. 699, 1333–1353 (2009)

    ADS  CAS  Google Scholar 

  20. Cortese, L., Catinella, B., Boissier, S., Boselli, A. & Heinis, S. The effect of the environment on the H I scaling relations. Mon. Not. R. Astron. Soc. 415, 1797–1806 (2011)

    ADS  CAS  Google Scholar 

  21. Davé, R. & Oppenheimer, B. D. The enrichment history of baryons in the Universe. Mon. Not. R. Astron. Soc. 374, 427–435 (2007)

    ADS  Google Scholar 

  22. Wiersma, R. P. C., Schaye, J. & Theuns, T. The effect of variations in the input physics on the cosmic distribution of metals predicted by simulations. Mon. Not. R. Astron. Soc. 415, 353–371 (2011)

    ADS  CAS  Google Scholar 

  23. Gallazzi, A., Brinchmann, J., Charlot, S. & White, S. D. M. A census of metals and baryons in stars in the local Universe. Mon. Not. R. Astron. Soc. 383, 1439–1458 (2008)

    ADS  CAS  Google Scholar 

  24. Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M. & Tremonti, C. A. The ages and metallicities of galaxies in the local universe. Mon. Not. R. Astron. Soc. 362, 41–58 (2005)

    ADS  CAS  Google Scholar 

  25. Woo, J., Courteau, S. & Dekel, A. Scaling relations and the fundamental line of the local group dwarf galaxies. Mon. Not. R. Astron. Soc. 390, 1453–1469 (2008)

    ADS  Google Scholar 

  26. Kirby, E. N. et al. The universal stellar mass-stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013)

    ADS  Google Scholar 

  27. Noterdaeme, P., Petitjean, P., Ledoux, C. & Srianand, R. Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II – Data Release 7. Astron. Astrophys. 505, 1087–1098 (2009)

    ADS  CAS  Google Scholar 

  28. Zafar, T. et al. The ESO UVES advanced data products quasar sample. II. Cosmological evolution of the neutral gas mass density. Astron. Astrophys. 556, A141 (2013)

    Google Scholar 

  29. Hernquist, L., Katz, N., Weinberg, D. H. & Miralda-Escudé, J. The Lyman-alpha forest in the cold dark matter model. Astrophys. J. 457, L51 (1996)

    ADS  CAS  Google Scholar 

  30. Pontzen, A. et al. Damped Lyman α systems in galaxy formation simulations. Mon. Not. R. Astron. Soc. 390, 1349–1371 (2008)

    ADS  CAS  Google Scholar 

  31. Altay, G., Theuns, T., Schaye, J., Booth, C. M. & Dalla Vecchia, C. The impact of different physical processes on the statistics of Lyman-limit and damped Lyman α absorbers. Mon. Not. R. Astron. Soc. 436, 2689–2707 (2013)

    ADS  CAS  Google Scholar 

  32. Rafelski, M., Wolfe, A. M., Prochaska, J. X., Neeleman, M. & Mendez, A. J. Metallicity evolution of damped Lyα systems out to z5. Astrophys. J. 755, 89 (2012)

    ADS  Google Scholar 

  33. Fumagalli, M. et al. Absorption-line systems in simulated galaxies fed by cold streams. Mon. Not. R. Astron. Soc. 418, 1796–1821 (2011)

    ADS  Google Scholar 

  34. Cen, R. The nature of damped Lyα systems and their hosts in the standard cold dark matter universe. Astrophys. J. 748, 121 (2012)

    ADS  Google Scholar 

  35. Bregman, J. N. The search for the missing baryons at low redshift. Annu. Rev. Astron. Astrophys. 45, 221–259 (2007)

    ADS  CAS  Google Scholar 

  36. Huterer, D. & Takada, M. Calibrating the nonlinear matter power spectrum: requirements for future weak lensing surveys. Astropart. Phys. 23, 369–376 (2005)

    ADS  Google Scholar 

  37. Laureijs, R. et al. Euclid assessment study report for the ESA cosmic visions. Preprint at http://arxiv.org/abs/0912.0914 (2009)

  38. van Daalen, M. P., Schaye, J., Booth, C. M. & Dalla Vecchia, C. The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology. Mon. Not. R. Astron. Soc. 415, 3649–3665 (2011)

    ADS  Google Scholar 

  39. Smith, R. E. et al. Stable clustering, the halo model and non-linear cosmological power spectra. Mon. Not. R. Astron. Soc. 341, 1311–1332 (2003)

    ADS  Google Scholar 

  40. Takahashi, R., Sato, M., Nishimichi, T., Taruya, A. & Oguri, M. Revising the Halofit model for the nonlinear matter power spectrum. Astrophys. J. 761, 152 (2012)

    ADS  Google Scholar 

  41. Weinmann, S. M. et al. A fundamental problem in our understanding of low-mass galaxy evolution. Mon. Not. R. Astron. Soc. 426, 2797–2812 (2012)

    ADS  Google Scholar 

  42. Hopkins, P. F. et al. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Preprint at http://arxiv.org/abs/1311.2073 (2013)

  43. Vogelsberger, M. et al. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 436, 3031–3067 (2013)

    ADS  CAS  Google Scholar 

  44. Dolag, K., Borgani, S., Murante, G. & Springel, V. Substructures in hydrodynamical cluster simulations. Mon. Not. R. Astron. Soc. 399, 497–514 (2009)

    ADS  Google Scholar 

  45. Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster of galaxies — I. Results at z = 0. Mon. Not. R. Astron. Soc. 328, 726–750 (2001)

    ADS  Google Scholar 

  46. Huang, S., Haynes, M. P., Giovanelli, R. & Brinchmann, J. The Arecibo Legacy Fast ALFA Survey: the galaxy population detected by ALFALFA. Astrophys. J. 756, 113 (2012)

    ADS  Google Scholar 

  47. Prochaska, J. X., O’Meara, J. M. & Worseck, G. A definitive survey for Lyman limit systems at z 3.5 with the Sloan Digital Sky Survey. Astrophys. J. 718, 392–416 (2010)

    ADS  CAS  Google Scholar 

  48. Vogelsberger, M., Sijacki, D., Kereš, D., Springel, V. & Hernquist, L. Moving mesh cosmology: numerical techniques and global statistics. Mon. Not. R. Astron. Soc. 425, 3024–3057 (2012)

    ADS  Google Scholar 

  49. Sijacki, D., Vogelsberger, M., Kereš, D., Springel, V. & Hernquist, L. Moving mesh cosmology: the hydrodynamics of galaxy formation. Mon. Not. R. Astron. Soc. 424, 2999–3027 (2012)

    ADS  Google Scholar 

  50. Kereš, D., Vogelsberger, M., Sijacki, D., Springel, V. & Hernquist, L. Moving-mesh cosmology: characteristics of galaxies and haloes. Mon. Not. R. Astron. Soc. 425, 2027–2048 (2012)

    ADS  Google Scholar 

  51. Genel, S. et al. Following the flow: tracer particles in astrophysical fluid simulations. Mon. Not. R. Astron. Soc. 435, 1426–1442 (2013)

    ADS  Google Scholar 

  52. Torrey, P., Vogelsberger, M., Sijacki, D., Springel, V. & Hernquist, L. Moving-mesh cosmology: properties of gas discs. Mon. Not. R. Astron. Soc. 427, 2224–2238 (2012)

    ADS  Google Scholar 

  53. Xu, G. A new parallel N-body gravity solver: TPM. Astrophys. J. Suppl. Ser. 98, 355 (1995)

    ADS  Google Scholar 

  54. Barnes, J. & Hut, P. A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986)

    ADS  Google Scholar 

  55. Faucher-Giguère, C.-A., Lidz, A., Zaldarriaga, M. & Hernquist, L. A new calculation of the ionizing background spectrum and the effects of He II reionization. Astrophys. J. 703, 1416–1443 (2009)

    ADS  Google Scholar 

  56. Ferland, G. J. et al. CLOUDY 90: numerical simulation of plasmas and their spectra. Publ. Astron. Soc. Pacif. 110, 761–778 (1998)

    ADS  Google Scholar 

  57. Rahmati, A., Pawlik, A. H., Raicevic, M. & Schaye, J. On the evolution of the H I column density distribution in cosmological simulations. Mon. Not. R. Astron. Soc. 430, 2427–2445 (2013)

    ADS  CAS  Google Scholar 

  58. Kennicutt, R. C., Jr The star formation law in galactic disks. Astrophys. J. 344, 685–703 (1989)

    ADS  CAS  Google Scholar 

  59. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

    ADS  Google Scholar 

  60. Springel, V. & Hernquist, L. Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation. Mon. Not. R. Astron. Soc. 339, 289–311 (2003)

    ADS  Google Scholar 

  61. Zahid, H. J. et al. Empirical constraints for the magnitude and composition of galactic winds. Astrophys. Space Sci. 349, 873–879 (2014)

    ADS  Google Scholar 

  62. Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005)

    ADS  CAS  PubMed  Google Scholar 

  63. Sijacki, D., Springel, V., Di Matteo, T. & Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 380, 877–900 (2007)

    ADS  CAS  Google Scholar 

  64. Marinacci, F., Pakmor, R. & Springel, V. The formation of disc galaxies in high-resolution moving-mesh cosmological simulations. Mon. Not. R. Astron. Soc. 437, 1750–1775 (2014)

    ADS  Google Scholar 

  65. Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437 (1996)

    ADS  CAS  Google Scholar 

  66. Lewis, A. & Challinor, A. CAMB: Code for Anisotropies in the Microwave Background. Astrophysics Source Code Library http://asterisk.apod.com/wp/ (2011)

  67. Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19 (2013)

    ADS  Google Scholar 

  68. Spergel, D., Flauger, R. & Hlozek, R. Planck data reconsidered. Preprint at http://arxiv.org/abs/1312.3313 (2013)

  69. White, S. D. M. in Cosmology and Large Scale Structure (eds Schaeffer, R., Silk, J., Spiro, M. & Zinn-Justin, J. ) 349 (Elsevier, 1996)

    Google Scholar 

  70. Zel’dovich, Y. B. Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970)

    ADS  Google Scholar 

  71. Seager, S., Sasselov, D. D. & Scott, D. A new calculation of the recombination epoch. Astrophys. J. 523, L1–L5 (1999)

    ADS  CAS  Google Scholar 

  72. Seager, S., Sasselov, D. D. & Scott, D. RECFAST: Calculate the Recombination History of the Universe. Astrophysics Source Code Library http://asterisk.apod.com/wp/ (2011)

  73. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985)

    ADS  CAS  Google Scholar 

  74. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003)

    ADS  Google Scholar 

  75. Lupton, R. et al. Preparing red-green-blue images from CCD data. Publ. Astron. Soc. Pacif. 116, 133–137 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

V.S. acknowledges support from the DFG Research Centre SFB-881 ‘The Milky Way System’ through project A1, and from the European Research Council under ERC-StG EXAGAL-308037. G.S. acknowledges support from the HST grants programme, no. HST-AR-12856.01-A. Support for program no. 12856 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. L.H. acknowledges support from NASA grant NNX12AC67G and NSF grant AST-1312095. D.X. acknowledges support from the Alexander von Humboldt Foundation. S.B. was supported by NSF grant AST-0907969. The Illustris simulation was run on the CURIE supercomputer at CEA/France as part of PRACE project RA0844, and the SuperMUC computer at the Leibniz Computing Centre, Germany, as part of GCS-project pr85je. Further simulations were run on the Harvard Odyssey and CfA/ITC clusters, the Ranger and Stampede supercomputers at the Texas Advanced Computing Center through XSEDE, and the Kraken supercomputer at Oak Rridge National Laboratory through XSEDE. Figure 1b is based on observations made with the NASA/ESA Hubble Space Telescope. These data were obtained from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute (STScI). These observations were associated with programs 9,352, 9,425, 9,488, 9,575, 9,793, 9,978, 10,086, 10,189, 10,258, 10,340, 10,530, 11,359, 11,563, 12,060, 12,061, 12,062, 12,099 and 12,177, and compiled for the Hubble eXtreme Deep Field data release version 1.0 (http://archive.stsci.edu/prepds/xdf/). Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts.

Author information

Authors and Affiliations

Authors

Contributions

M.V., L.H., D.S., V.S. and S.G. conceived and planned the project. M.V., S.G., D.S. and P.T. developed the galaxy formation model. V.S. developed the AREPO code. M.V. generated initial conditions. V.S., M.V. and S.G. ran the simulations. M.V. performed the main analysis. G.S. and P.T. constructed the mock images. S.B. provided statistics of the inter-galactic medium. D.X. and D.N. provided post-processing tools. M.V., S.G., V.S., P.T. and L.H. interpreted the results. M.V. and S.G. wrote the manuscript with contributions from co-authors.

Corresponding author

Correspondence to M. Vogelsberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related audio

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogelsberger, M., Genel, S., Springel, V. et al. Properties of galaxies reproduced by a hydrodynamic simulation. Nature 509, 177–182 (2014). https://doi.org/10.1038/nature13316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13316

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing