Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

Abstract

Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of Yellowstone.
Figure 2: Concentration and isotope ratios for Yellowstone gases.
Figure 3: Crustal versus mantle 4He flux based on ref. 7.

Similar content being viewed by others

References

  1. Porcelli, D., Ballentine, C. J. & Wieler, R. Noble Gases in Geochemistry and Cosmochemistry (Rev. Mineral. Geochem. 47, Mineralogical Society of America and the Geochemical Society, 2002)

    Book  Google Scholar 

  2. Craig, H., Lupton, J. E., Welhan, J. A. & Poreda, R. Helium isotope ratios in Yellowstone and Lassen Park volcanic gases. Geophys. Res. Lett. 5, 897–900 (1978)

    Article  ADS  CAS  Google Scholar 

  3. Ballentine, C. J., Burgess, R. & Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 47, 539–614 (2002)

    Article  CAS  Google Scholar 

  4. Ballentine, C. J. & Sherwood Lollar, B. Regional groundwater focusing of nitrogen and noble gases in the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66, 2483–2497 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Kennedy, B. M. et al. Mantle fluids in the San Andreas fault system, California. Science 278, 1278–1281 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Torgersen, T. & Clarke, W. B. Helium accumulation in groundwater, I: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 49, 1211–1218 (1985)

    Article  ADS  CAS  Google Scholar 

  7. Torgersen, T. Continental degassing flux of 4He and its variability. Geochem. Geophys. Geosyst. 11, Q06002 (2010)

    Article  ADS  Google Scholar 

  8. Sano, Y., Wakita, H. & Huang, C.-W. Helium flux in a continental land area estimated from 3He/4He ratio in northern Taiwan. Nature 323, 55–57 (1986)

    Article  ADS  CAS  Google Scholar 

  9. Kennedy, B. M., Lynch, M. A., Reynolds, J. H. & Smith, S. P. Intensive sampling of noble gases in fluids at Yellowstone, I. Early overview of the data; regional patterns. Geochim. Cosmochim. Acta 49, 1251–1261 (1985)

    Article  ADS  CAS  Google Scholar 

  10. Bergfeld, D. B. et al. Gas and Isotope Chemistry of Thermal Features in Yellowstone National Park, Wyoming. Scientific Investigations Report 2011–5012 (US Geological Survey, 2011)

  11. Werner, C. et al. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA. J. Volcanol. Geotherm. Res. 178, 751–762 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Lowenstern, J. B., Bergfeld, D., Evans, W. C. & Hurwitz, S. Generation and evolution of hydrothermal fluids at Yellowstone: insights from the Heart Lake Geyser Basin. Geochem. Geophys. Geosyst. 13, Q01017 (2012)

    Article  ADS  Google Scholar 

  13. Bergfeld, D. B., Evans, W. C., Lowenstern, J. B. & Hurwitz, S. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National park, Wyoming. Chem. Geol. 330–331, 233–243 (2012)

    Article  ADS  Google Scholar 

  14. Smith, R. B. et al. Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow. J. Volcanol. Geotherm. Res. 188, 26–56 (2009)

    Article  ADS  CAS  Google Scholar 

  15. Lowenstern, J. B. & Hurwitz, S. Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone Caldera. Elements 4, 35–40 (2008)

    Article  CAS  Google Scholar 

  16. Werner, C. & Brantley, S. CO2 emissions from the Yellowstone volcanic system. Geochem. Geophys. Geosyst. 4, 1061 (2003)

    ADS  Google Scholar 

  17. Lorenson, T. D. & Kvenvolden, K. A. in The Future of Energy Gases (eds Howell D. G. et al.) 453–470 (Profession Paper 1570, US Geological Survey, 1993)

    Google Scholar 

  18. Chiodini, G. et al. Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochim. Cosmochim. Acta 89, 265–278 (2012)

    Article  ADS  CAS  Google Scholar 

  19. Ballentine, C. J. & Burnard, P. G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481–538 (2002)

    Article  CAS  Google Scholar 

  20. Rudnick, R. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995)

    Article  ADS  Google Scholar 

  21. Vaughan, R. G., Keszthelyi, L. P., Lowenstern, J. B., Jaworowski, C. & Heasler, H. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park. J. Volcanol. Geotherm. Res. 233–234, 72–89 (2012)

    Article  ADS  Google Scholar 

  22. Graham, D. W. et al. Mantle source provinces beneath the Northwestern USA delimited by helium isotopes in young basalts. J. Volcanol. Geotherm. Res. 188, 128–140 (2009)

    Article  ADS  CAS  Google Scholar 

  23. Chiodini, G. CO2/CH4 ratio in fumaroles a powerful tool to detect magma degassing at quiescent volcanoes. Geophys. Res. Lett. 36, L02302 (2009)

    Article  ADS  Google Scholar 

  24. Christiansen, R. L. The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho, and Montana. Professional Paper 729-G (US Geological Survey, 2001)

    Book  Google Scholar 

  25. Mueller, P. & Frost, C. The Wyoming Province: a distinctive Archean craton in Laurentian North America. Can. J. Earth Sci. 43, 1391–1397 (2006)

    Article  ADS  Google Scholar 

  26. Hildreth, W., Halliday, A. N. & Christiansen, R. L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field. J. Petrol. 32, 63–138 (1991)

    Article  ADS  CAS  Google Scholar 

  27. Bindeman, I. N., Fu, B., Kita, N. T. & Valley, J. W. Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J. Petrol. 49, 163–193 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Mueller, P. A., Mogk, D. W., Henry, D. J., Wooden, J. L. & Foster, D. A. Geologic evolution of the Beartooth Mountains: insights from petrology and geochemistry. Northwest Geol. 37, 5–20 (2008)

    Google Scholar 

  29. Farley, K. A. (U-Th)/He dating: techniques, calibrations and applications. Rev. Mineral. Geochem. 47, 819–844 (2002)

    Article  CAS  Google Scholar 

  30. Ingebritsen, S. E. & Manning, C. E. Permeability of the continental crust: dynamic variations from seismicity and metamorphism. Geofluids 10, 193–205 (2010)

    Google Scholar 

  31. Holland, G. et al. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497, 357–360 (2013)

    Article  ADS  CAS  Google Scholar 

  32. Sapienza, G., Hilton, D. R. & Scribano, V. Helium isotopes in peridotite mineral phases from Hyblean Plateau xenoliths (south-eastern Sicily, Italy). Chem. Geol. 219, 115–129 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Lippmann-Pipke, J. et al. Neon identifies two billion year old fluid component in Kappvaal Craton. Chem. Geol. 283, 287–296 (2011)

    Article  ADS  CAS  Google Scholar 

  34. Lewicki, J. L. et al. Comparative soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, Nicaragua. Bull. Volcanol. 68, 76–90 (2005)

    Article  ADS  Google Scholar 

  35. Werner, C., Brantley, S. & Boomer, K. CO2 emissions related to the Yellowstone volcanic system 2. Statistical sampling, total degassing, and transport mechanisms. J. Geophys. Res. 105, 10831–10846 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Dunai, T. J. & Porcelli, D. Storage and transport of noble gases in the subcontinental lithosphere. Rev. Mineral. Geochem. 47, 371–409 (2002)

    Article  CAS  Google Scholar 

  37. Peng, X. & Humphreys, E. D. Crustal velocity structure across the eastern Snake River Plain and the Yellowstone swell. J. Geophys. Res. 103, 7171–7186 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Ingebritsen for a review. C. Hendrix, S. Gunther, H. Heasler and D. Mahony assisted with field planning and logistics.

Author information

Authors and Affiliations

Authors

Contributions

J.B.L. and D.B. together led the sampling program at Yellowstone. W.C.E. participated in the fieldwork. D.B. did all laboratory analyses except the noble-gas analyses. D.B. also led the diffuse degassing fieldwork at Brimstone Basin and Heart Lake. A.G.H. performed the noble-gas analyses. J.B.L. first recognized the significance of the He emission rates for crustal degassing and wrote the first draft of the manuscript. W.C.E. provided considerable input on gas geochemistry and noble-gas systematics, and assisted with subsequent drafts. All authors edited later versions of the manuscript.

Corresponding author

Correspondence to J. B. Lowenstern.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Box plot with distribution shape for Rc/Ra values from 83 locations in Yellowstone National Park after averaging multiple analyses from a single site.

The dashed lines are the quartiles. The solid horizontal lines are respectively the 5th and 95th percentiles and the median. The short, broad diamond represents the mean and the black dots are individual data.

Extended Data Figure 2 Box plot with distribution shape for CO2/He in gas from 107 locations in Yellowstone National Park after averaging multiple analyses from a single site.

The dashed lines are the quartiles. The solid horizontal lines are respectively the 5th and 95th percentiles and the median. The short, broad diamond represents the mean and the black dots are individual data.

Supplementary information

Supplementary Data

This file contains the Source Data for Table 1 in the main paper. (XLSX 52 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowenstern, J., Evans, W., Bergfeld, D. et al. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature 506, 355–358 (2014). https://doi.org/10.1038/nature12992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12992

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing