Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of behaviour in adaptive morphological evolution of African proboscideans

This article has been updated

Abstract

The fossil record richly illustrates the origin of morphological adaptation through time. However, our understanding of the selective forces responsible in a given case, and the role of behaviour in the process, is hindered by assumptions of synchrony between environmental change, behavioural innovation and morphological response. Here I show, from independent proxy data through a 20-million-year sequence of fossil proboscideans in East Africa, that changes in environment, diet and morphology are often significantly offset chronologically, allowing dissection of the roles of behaviour and different selective drivers. These findings point the way to hypothesis-driven testing of the interplay between habitat change, behaviour and morphological adaptation with the use of independent proxies in the fossil record1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of proboscidean genera included in this study.
Figure 2: Environmental, behavioural and morphological trends for East African proboscideans over the past 20 Myr.
Figure 3: Incremental evolution of hypsodonty index in the African Plio-Pleistocene Palaeoloxodon recki/iolensis lineage.
Figure 4: Hypsodonty evolution in African Pliocene to Recent Loxodonta.

Change history

  • 14 August 2013

    A minor typo in the Fig. 4 legend was corrected.

References

  1. Lister, A. M. Behavioural leads in evolution – evidence from the fossil record. Biol. J. Linn. Soc (in the press)

  2. Maglio, V. J. Origin and evolution of the Elephantidae. Trans. Am. Phil. Soc. 63, 1–149 (1973)

    Article  Google Scholar 

  3. Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc. Natl Acad. Sci. USA 108, 6509–6514 (2011)

    Article  CAS  ADS  Google Scholar 

  4. Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011)

    Article  CAS  ADS  Google Scholar 

  5. Levin, N. E., Brown, F. H., Behrensmeyer, A. K., Bobe, R. & Cerling, T. E. Paleosol carbonates from the Omo Group: isotopic records of local and regional environmental change in East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307, 75–89 (2011)

    Article  Google Scholar 

  6. Sanders, W. J., Gheerbrant, E., Harris, J. M., Saegusa, H. & Delmer, C. in Cenozoic Mammals of Africa. (eds Werdelin, L. & Sanders, W. J. ) 161–251 (Univ. of California Press, 2010)

    Book  Google Scholar 

  7. Kingston, J. D. in Paleontology and Geology of Laetoli: Human Evolution in Context. Volume 1: Geology, Geochronology, Paleoecology and Paleoenvironment (ed. T. Harrison) Ch. 15 293–328 (Springer, 2011)

    Google Scholar 

  8. Cerling, T. E., Harris, J. M. & Leakey, M. G. Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia 120, 364–374 (1999)

    Article  ADS  Google Scholar 

  9. Cerling, T. E. et al. Global change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997)

    Article  CAS  ADS  Google Scholar 

  10. Zazzo, A. et al. Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology 26, 294–309 (2000)

    Article  Google Scholar 

  11. Hummel, J. et al. Another one bites the dust: faecal silica levels in large herbivores correlate with high-crowned teeth. Proc. R. Soc. Lond. B 278, 1742–1747 (2011)

    Article  Google Scholar 

  12. Mendoza, M. & Palmqvist, P. Hypsodonty increase in ungulates: an adaptation for grass consumption or for foraging in open habitat? J. Zool. 274, 134–142 (2008)

    Article  Google Scholar 

  13. Janis, C. M. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T. ) 21–45 (Springer, 2008)

    Book  Google Scholar 

  14. Damuth, J. & Janis, C. M. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol. Rev. Camb. Philos. Soc. 86, 733–758 (2011)

    Article  Google Scholar 

  15. Strömberg, C. A. E. Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32, 236–258 (2006)

    Article  Google Scholar 

  16. Mihlbachler, M. C., Rivals, F., Solounias, N. & Semprebon, G. M. Dietary change and evolution of horses in North America. Science 331, 1178–1181 (2011)

    Article  CAS  ADS  Google Scholar 

  17. Lucas, P. W. et al. Mechanisms and causes of wear in tooth enamel: implications for hominin diets. J. R. Soc. Interface 10, 20120923 (2013)

    Article  Google Scholar 

  18. Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011)

    Article  ADS  Google Scholar 

  19. Feakins, S. J. & DeMenocal, P. B. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J. ) 45–55 (Univ. of California Press, 2010)

    Book  Google Scholar 

  20. Valentin, C. in Global Change and Terrestrial Ecosystems (eds Walker, B. H. & Steffen, W. ) 317–338 (Cambridge Univ. Press, 1996)

    Google Scholar 

  21. Bealey, W. J. et al. Estimating the reduction of urban PM10 concentrations by trees within an environmental information system for planners. J. Envtl. Mgmt. 85, 44–58 (2007)

    Article  CAS  Google Scholar 

  22. Codron, D. et al. Functional differentiation of African grazing ruminants: an example of specialized adaptations to very small changes in diet. Biol. J. Linn. Soc. 94, 755–764 (2008)

    Article  Google Scholar 

  23. Sanders, W. J. & Haile-Selassie, Y. A new assemblage of Mid-Pliocene proboscideans from the Woranso-Mille Area, Afar Region, Ethiopia: taxonomic, evolutionary, and paleoecological considerations. J. Mamm. Evol. 19, 105–128 (2012)

    Article  Google Scholar 

  24. Lister, A. M. et al. New fossil remains of Elephas from the southern Levant: implications for the evolutionary history of the Asian elephant. Palaeogeogr. Palaeoclimatol. Palaeoecol.. http://dx.doi.org/10.1016/j.palaeo.2013.05.013 (20 May 2013)

  25. Lister, A. M. & Sher, A. V. Gradual evolution and speciation in the origin of the woolly mammoth. Science 294, 1094–1097 (2001)

    Article  CAS  ADS  Google Scholar 

  26. Strömberg, C. A. E. The origin and spread of grass-dominated ecosystems in the Late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177, 59–75 (2002)

    Article  Google Scholar 

  27. Hautier, L. et al. New material of Anancus kenyensis (Proboscidea, Mammalia) from Toros-Menalla (Late Miocene, Chad): contribution to the systematics of African anancines. J. Afr. Earth Sci. 53, 171–176 (2009)

    Article  ADS  Google Scholar 

  28. Sanders, W. J. in Paleontology and Geology of Laetoli: Human Evolution in Context. Volume 2: Fossil Hominins and the Associated Fauna (ed. Harrison, T. ) 233–262 (Springer, 2011)

    Book  Google Scholar 

  29. Rohland, N. et al. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup. PLoS Biol. 5, e207 (2007)

    Article  Google Scholar 

  30. Eggert, L. S., Rasner, C. A. & Woodruff, D. S. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers. Proc. R. Soc. Lond. B 269, 1993–2006 (2002)

    Article  CAS  Google Scholar 

  31. Levin, N. E. Compilation of East Africa soil carbonate stable isotope data. Integrated Earth Data Applications http://dx.doi.org/10.1594/IEDA/100231 (2013)

  32. Sikes, N. E. & Ashley, G. M. Stable isotopes of pedogenic carbonates as indicators of paleoecology in the Plio-Pleistocene (upper Bed I), western margin of the Olduvai Basin, Tanzania. J. Hum. Evol. 53, 574–594 (2007)

    Article  Google Scholar 

  33. Quinn, R. L., Lepre, C. J., Wright, J. D. & Feibel, C. S. Paleogeographic variations of pedogenic carbonate δ13C values from Koobi Fora, Kenya: implications for floral compositions of Plio-Pleistocene hominin environments. J. Hum. Evol. 53, 560–573 (2007)

    Article  Google Scholar 

  34. Levin, N. E., Quade, J., Simpson, S. W., Semaw, S. & Rogers, M. Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia. Earth Planet. Sci. Lett. 219, 93–110 (2004)

    Article  CAS  ADS  Google Scholar 

  35. Bestland, E. A. & Krull, E. S. Palaeoenvironments of Early Miocene Kisingiri volcano Proconsul sites: evidence from carbon isotopes, palaeosols and hydromagmatic deposits. J. Geol. Soc. Lond. 156, 965–976 (1999)

    Article  CAS  Google Scholar 

  36. Kingston, J. D., Marino, B. D. & Hill, A. Isotopic evidence for Neogene hominid paleoenvironments in the Kenya Rift Valley. Science 264, 955–959 (1994)

    Article  CAS  ADS  Google Scholar 

  37. Cerling, T. E. et al. Expansion and emergence of C4 plants. Nature 371, 112–113 (1994)

    Article  ADS  Google Scholar 

  38. Ségalen, L., Lee-Thorp, J. A. & Cerling, T. Timing of C4 grass expansion across sub-Saharan Africa. J. Hum. Evol. 53, 549–559 (2007)

    Article  Google Scholar 

  39. Cerling, T., Harris, J. & Leakey, M. in Lothagam: The Dawn of Humanity in Eastern Africa Vol. 1 (eds Leakey, M. G. & Harris, J. M. ) 605–624 (Columbia Univ. Press, 2003)

    Google Scholar 

  40. Bobe, R. The evolution of arid ecosystems in eastern Africa. J. Arid Environ. 66, 564–584 (2006)

    Article  ADS  Google Scholar 

  41. MacInnes, D. G. Miocene and post-Miocene Proboscidea from East Africa. Trans. Zool. Soc. Lond. 25, 33–106 (1942)

    Article  Google Scholar 

  42. Tassy, P. Présence du genre Choerolophodon Schlesinger (Proboscidea, Mammalia) dans le Miocène est-africain. C. r. hebd. Séanc. Acad. Sci. Paris 284, 2487–2490 (1977)

    Google Scholar 

  43. Pickford, M. Afrochoerodon nov. gen. kisumuensis (MacInnes) (Proboscidea, Mammalia) from Cheparawa, Middle Miocene, Kenya. Ann. Paleontol. 87, 99–117 (2001)

    Article  Google Scholar 

  44. Tassy, P. Nouveaux Elephantoidea (Mammalia) dans le Miocène du Kenya. Cahiers de Paléontologie (CNRS, Paris, 1986)

    Google Scholar 

  45. Kunimatsu, Y. et al. A new Late Miocene great ape from Kenya and its implications for the origins of African great apes and humans. Proc. Natl Acad. Sci. USA 104, 19220–19225 (2007)

    Article  ADS  Google Scholar 

  46. Tassy, P. in Lothagam: The Dawn of Humanity in Eastern Africa (eds Leakey, M. G. & Harris, J. M. ) 331–358 (Columbia Univ. Press, 2003)

    Google Scholar 

  47. Tsujikawa, H. The palaeoenvironment of Samburupithecus kiptalami based on its associated fauna. Afr. Study Monogr. 32 (Suppl.). 51–62 (2005)

    Google Scholar 

  48. Lister, A. M., Sher, A. V., van Essen, H. & Wei, G. The pattern and process of mammoth evolution in Eurasia. Quat. Int. 126–128, 49–64 (2005)

    Article  Google Scholar 

  49. Inuzuka, N. & Takahashi, K. Discrimination between the genera Palaeoloxodon and Elephas and the independent taxonomical position of Palaeoloxodon (Mammalia: Proboscidea). Miscelánea en homenaje a Emiliano Aguirre 2, 234–244 (2004)

    Google Scholar 

  50. Shoshani, J. et al. Relationships within the Elephantinae using hyoid characters. Quat. Int. 169–170, 174–185 (2007)

    Article  Google Scholar 

  51. Saegusa, H. & Gilbert, W. H. in Homo erectus in Africa, Pleistocene Evidence from the Middle Awash (eds Henry, W., Gilbert, W. H. & Asfaw, B. ) 193–226 (Univ. of California Press, 2008)

    Google Scholar 

  52. Beden, M. Les Elephants (Loxodonta et Elephas) d’Afrique Orientale. Systématique, phylogénie, intérêt biochronologique. PhD thesis, Univ. Poitiers. (1979)

  53. Beden, M. Elephas recki Dietrich, 1915 (Proboscidea, Elephantidae). Évolution au cours du Plio-Pléistocène en Afrique orientale. Geobios 13, 891–901 (1980)

    Article  Google Scholar 

  54. Todd, N. E. Reanalysis of African Elephas recki: implications for time, space and taxonomy. Quat. Int. 126–128, 65–72 (2005)

    Article  Google Scholar 

  55. Ferretti, M. P., Ficcarelli, G., Libsekal, Y., Tecle, T. M. & Rook, L. Fossil elephants from Buia (Northern Afar Depression, Eritrea) with remarks on the systematics of Elephas recki (Proboscidea, Elephantidae). J. Vertebr. Paleontol. 23, 244–257 (2003)

    Article  Google Scholar 

  56. Sanders, W. J. & Haile-Selassie, Y. A new assemblage of Mid-Pliocene proboscideans from the Woranso-Mille Area, Afar Region, Ethiopia: taxonomic, evolutionary, and paleoecological considerations. J. Mamm. Evol. 19, 105–128 (2012)

    Article  Google Scholar 

  57. Beden, M. in Koobi Fora Research Project, Vol. 2 (ed. Harris, J. M. ) 40–129 (Clarendon Press, 1983)

    Google Scholar 

  58. Behrensmeyer, A. K. et al. The Pleistocene locality of Kanjera, Western Kenya: stratigraphy, chronology and paleoenvironments. J. Hum. Evol. 29, 247–274 (1995)

    Article  Google Scholar 

  59. Kalb, J. E. & Mebrate, A. Fossil elephantoids from the hominid-bearing Awash group, Middle Awash Valley, Afar Depression, Ethiopia. Trans. Am. Phil. Soc. 83, 1–114 (1993)

    Article  Google Scholar 

  60. Tassy, P. in Geology and Palaeobiology of the Albertine Rift Valley, Uganda-Zaire, Vol. II (eds Senut, B. & Pickford, M. ) 217–257 (CIFEG, 1994)

    Google Scholar 

  61. Tiercelin, J.-J., Michaux, J. & Bandet, Y. Le Miocène supérieur du Sud de la dépression de l'Afar, Ethiopie: sédiments, faunes, âges isotopiques. Bull. Soc. Geol. Fr. 21, 255–258 (1979)

    Article  Google Scholar 

  62. Geraads, D., Alemseged, Z. & Bellon, H. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar age of associated volcanics. Tertiary Res. 21, 113–122 (2002)

    Google Scholar 

  63. International Union for the Conservation of Nature. The IUCN Red List of Threatened Species. http://www.iucnredlist.org/details/12392/0 (accessed 06 April 2013) (2012)

  64. Roca, A. L., Georgiadis, N., Pecon-Slattery, J. & O’Brien, S. J. Genetic evidence for two species of elephant in Africa. Science 293, 1473–1477 (2001)

    Article  CAS  ADS  Google Scholar 

  65. Debruyne, R. Différenciation Morphologique et Moléculaire des Elephantinae (Mammalia, Proboscidea). PhD thesis, Muséum National d’Histoire Naturelle, Paris. (2003)

  66. Morrison-Scott, T. C. P. A revision of our knowledge of African elephants’ teeth, with notes on forest and “pygmy” elephants. Proc. Zool. Soc. Lond. 117, 505–527 (1947)

    Article  Google Scholar 

  67. Laws, R. M. Age criteria for the African elephant, Loxodonta a. africana. East African Wildlife Journal 4, 1–37 (1966)

    Article  Google Scholar 

  68. Aguirre, E. E. Revisión sistemática de los Elephantidae por su morfología y morfometría dentaria. Estudios Geologicos 24, 109–167; 25, 123–177,. 317–367 (1969)

    Google Scholar 

  69. Grubb, P., Groves, C. P., Dudley, J. P. & Shoshani, J. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900). Elephant 2, 1–4 (2000)

    Article  Google Scholar 

  70. Deino, A. L. in Paleontology and Geology of Laetoli: Human Evolution in Context. Volume 1: Geology, Geochronology, Paleoecology and Paleoenvironment (ed. T. Harrison) 77–98 (Springer, 2011)

    Book  Google Scholar 

Download references

Acknowledgements

I thank T. E. Cerling, W. J. Sanders and C. M. Janis for discussion; K. Uno, Y. Kunimatsu and H. Nakaya for assistance with specimen identification; and P. Hadland, R. Portela-Miguez and W. Wendelin for access to collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian M. Lister.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-2 and full legends for Supplementary Tables 1-3. (PDF 416 kb)

Supplementary Data

This file contains Supplementary Tables 1-3, see Supplementary Information document for full legends. (XLSX 103 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lister, A. The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500, 331–334 (2013). https://doi.org/10.1038/nature12275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12275

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing