Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental influences on human innovation and behavioural diversity in southern Africa 92–80 thousand years ago

Abstract

Africa’s Middle Stone Age preserves sporadic evidence for novel behaviours among early modern humans, prompting a range of questions about the influence of social and environmental factors on patterns of human behavioural evolution. Here we document a suite of novel adaptations dating approximately 92–80 thousand years before the present at the archaeological site Varsche Rivier 003 (VR003), located in southern Africa’s arid Succulent Karoo biome. Distinctive innovations include the production of ostrich eggshell artefacts, long-distance transportation of marine molluscs and systematic use of heat shatter in stone tool production, none of which occur in coeval assemblages at sites in more humid, well-studied regions immediately to the south. The appearance of these novelties at VR003 corresponds with a period of reduced regional wind strength and enhanced summer rainfall, and all of them disappear with increasing winter rainfall dominance after 80 thousand years before the present, following which a pattern of technological similarity emerges at sites throughout the broader region. The results indicate complex and environmentally contingent processes of innovation and cultural transmission in southern Africa during the Middle Stone Age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location and biogeographic context of Varsche Rivier 003.
Fig. 2: East section of deep sounding with key artefact type and location of geochronology samples.
Fig. 3: Comparison of primary factors determining long-term regional climate dynamics with VR003 phytolith data.
Fig. 4: Flaked OES fragments from the Lower Deposits.
Fig. 5: A selection of silcrete cores from the Lower Deposits.

Similar content being viewed by others

Data availability

The spatial, lithic, faunal and pigment data used in this paper are included as Supplementary Data. Phytolith data are provided in tables in the Supplementary Information. The VR003 collections are curated at the University of Cape Town and Iziko Museums Cape Town, and can be accessed by arrangement with the corresponding authors. All data used in the present study are available from the corresponding authors on reasonable request.

References

  1. Lombard, M. et al. South African and Lesotho Stone Age sequence updated. S. Afr. Archaeol. Bull. 67, 120–144 (2012).

    Google Scholar 

  2. Kandel, A. W. et al. Increasing behavioral flexibility? An integrative macro-scale approach to understanding the Middle Stone Age of southern Africa. J. Archaeol. Method Theory 23, 623–628 (2015).

    Article  Google Scholar 

  3. Porraz, G. et al. Experimentation preceding innovation in a MIS5 Pre-Still Bay layer from Diepkloof Rock Shelter (South Africa): emerging technologies and symbols. Preprint at EcoEvoRxiv https://ecoevorxiv.org/ch53r/ (2020).

  4. Texier, P. J. et al. A Howiesons Poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa. Proc. Natl Acad. Sci. USA 107, 6180–6185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henshilwood, C. S. et al. Klipdrift Shelter, southern Cape, South Africa: preliminary report on the Howiesons Poort layers. J. Archaeol. Sci. 45, 284–303 (2014).

    Article  Google Scholar 

  6. Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene demography and the appearance of modern human behavior. Science 324, 1298–1301 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Marean, C. W. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Phil. Trans. R. Soc. B 371, 20150239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mackay, A., Stewart, B. A. & Chase, B. M. Coalescence and fragmentation in the late Pleistocene archaeology of southernmost Africa. J. Hum. Evol. 72, 26–51 (2014).

    Article  PubMed  Google Scholar 

  9. Wilkins, J. et al. Innovative Homo sapiens behaviours 105,000 years ago in a wetter Kalahari. Nature 592, 248–252 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Dewar, G. & Stewart, B. A. Preliminary results of excavations at Spitzkloof Rockshelter, Richtersveld, South Africa. Quat. Int. 270, 30–39 (2012).

    Article  Google Scholar 

  11. Cowling, R. M. & Pierce, S. Namaqualand: A Succulent Desert (Fernwood Press, 1999).

  12. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  13. Mucina, L. et al. in The Vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 221–299 (SANBI, 2006).

  14. Rebelo, A. G., Boucher, C., Helme, N., Mucina, L. & Rutherford, M. C. in The Vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 53–219 (SANBI, 2006).

  15. Marean, C. W. et al. in Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region (eds Allsopp, N. et al.) 164–199 (Oxford Univ. Press, 2014).

  16. Carr, A. S., Chase, B. M. & Mackay, A. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. & Stewart, B. A.) 23–47 (Springer, 2016).

  17. Chase, B. M. & Meadows, M. E. Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci. Rev. 84, 103–138 (2007).

    Article  Google Scholar 

  18. Steele, T. E. et al. Varsche Rivier 003: a Middle and Later Stone Age site with Still Bay and Howiesons Poort assemblages in southern Namaqualand, South Africa. Paleoanthropology 2016, 100–163 (2016).

    Google Scholar 

  19. Sharp, W. D. et al. 230Th/U burial dating of ostrich eggshell. Quat. Sci. Rev. 219, 263–276 (2019).

    Article  Google Scholar 

  20. Chase, B. M. et al. South African speleothems reveal influence of high- and low-latitude forcing over the last 113.5 kyr. Geology 49, 1353–1357 (2021).

    Article  CAS  Google Scholar 

  21. Chase, B. M. et al. Influence of tropical easterlies in southern Africa’s winter rainfall zone during the Holocene. Quat. Sci. Rev. 107, 138–148 (2015).

    Article  Google Scholar 

  22. Manning, J. Namaqualand (Briza, 2008).

  23. Skinner, J. D. & Chimimba, C. T. The Mammals of the Southern African Subregion 3rd edn (Cambridge Univ. Press, 2005).

  24. Skead, C. J. Historical Mammal Incidence in the Cape Province Vol 1: The Western and Northern Cape (Cape Town Department of Nature and Environmental Conservation, 1980).

  25. Churcher, C. S. Distribution and history of the Cape zebra (Equus capensis) in the Quaternary of Africa. Trans. R. Soc. S. Afr. 61, 89–95 (2006).

    Article  Google Scholar 

  26. Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Climate 12, 1079–1092 (2016).

    Google Scholar 

  27. De Wet, W. Bathymetry of the South African Continental Shelf. MSc thesis, Univ. Cape Town (2013).

  28. Jerardino, A. & Marean, C. W. Shellfish gathering, marine paleoecology and modern human behavior: perspectives from Cave PP13B, Pinnacle Point, South Africa. J. Hum. Evol. 59, 412–424 (2010).

    Article  PubMed  Google Scholar 

  29. Marean, C. W. Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: the Cape Floral kingdom, shellfish, and modern human origins. J. Hum. Evol. 59, 425–443 (2010).

    Article  PubMed  Google Scholar 

  30. Kandel, A. W. Modification of ostrich eggs by carnivores and its bearing on the interpretation of archaeological and paleontological find. J. Archaeol. Sci. 31, 377–391 (2004).

    Article  Google Scholar 

  31. Steele, T. E. & Klein, R. G. The Middle and Later Stone Age faunal remains from Diepkloof Rock Shelter, Western Cape, South Africa. J. Archaeol. Sci. 40, 3453–3462 (2013).

    Article  Google Scholar 

  32. Klein, R. G. et al. The Ysterfontein 1 Middle Stone Age site, South Africa, and early human exploitation of coastal resources. Proc. Natl Acad. Sci. USA 101, 5708–5715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vogelsang, R. et al. New excavations of Middle Stone Age deposits at Apollo 11 Rockshelter, Namibia: stratigraphy, archaeology, chronology and past environments. J. Afr. Archaeol. 8, 185–218 (2010).

  34. Marean, C. W. et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905–908 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt, I. et al. New investigations at the Middle Stone Age site of Pockenbank Rockshelter, Namibia. Antiquity 90, e2 (2016).

    Article  Google Scholar 

  36. Vogelsang, R. Middle Stone Age Fundstellen in Südwest-Namibia, Africa (Heinrich-Barth-Institut, 1998).

  37. Plug, I. Aquatic animals and their associates from the Middle Stone Age levels at Sibudu. South. Afr. Humanit. 18, 289–299 (2006).

    Google Scholar 

  38. Wurz, S. Technological trends in the Middle Stone Age of South Africa between MIS 7 and MIS 3. Curr. Anthropol. 54, S305–S319 (2013).

    Article  Google Scholar 

  39. Volman, T. P. The Middle Stone Age in the Southern Cape. PhD thesis, Univ. Chicago (1981).

  40. Schmidt, P. & Mackay, A. Why was silcrete heat-treated in the Middle Stone Age? An early transformative technology in the context of raw material use at Mertenhof Rock Shelter, South Africa. PloS ONE 11, e0149243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Porraz, G. et al. Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa. J. Archaeol. Sci. 40, 3376–3400 (2013).

    Article  Google Scholar 

  42. Schmid, V., Conard, N. J., Parkington, J., Texier, P. J. & Porraz, G. The ‘MSA 1’ of Elands Bay Cave (South Africa) in the context of the southern African early MSA technologies. South. Afr. Humanit. 29, 153–201 (2016).

    Google Scholar 

  43. Evans, U. Hollow Rock Shelter, a Middle Stone Age site in the Cederberg. South. Afr. Field Archaeol. 3, 63–73 (1994).

    Google Scholar 

  44. Mackay, A., Jacobs, Z. & Steele, T. E. Pleistocene archaeology and chronology of Putslaagte 8 (PL8) rockshelter, Western Cape, South Africa. J. Afr. Archaeol. 13, 71–98 (2015).

    Article  Google Scholar 

  45. Thompson, J. C. et al. Ecological risk, demography and technological complexity in the Late Pleistocene of northern Malawi: implications for geographical patterning in the Middle Stone Age. J. Quat. Sci. 33, 261–284 (2018).

    Article  Google Scholar 

  46. Vaesen, K. & Houkes, W. Is human culture cumulative? Curr. Anthropol. 62, 218–238 (2021).

    Article  Google Scholar 

  47. Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sterelny, K. From hominins to humans: how sapiens became behaviourally modern. Phil. Trans. R. Soc. B 366, 809–822 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gärdenfors, P. & Högberg, A. The archaeology of teaching and the evolution of Homo docens. Curr. Anthropol. 58, 188–208 (2017).

    Article  Google Scholar 

  50. Marwick, B. Pleistocene exchange networks as evidence for the evolution of language. Camb. Archaeol. J. 13, 67–81 (2003).

    Article  Google Scholar 

  51. Blegen, N. The earliest long-distance obsidian transport: evidence from the 200 ka Middle Stone Age Sibilo School Road Site, Baringo, Kenya. J. Hum. Evol. 103, 1–19 (2017).

    Article  PubMed  Google Scholar 

  52. McBrearty, S. & Brooks, A. S. The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J. Hum. Evol. 39, 453–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Klein, R. G. Archeology and the evolution of human behavior. Evol. Anthropol. 9, 17–36 (2000).

    Article  Google Scholar 

  54. Wynn, T. & Coolidge, F. L. Archeological insights into hominin cognitive evolution. Evol. Anthropol. 25, 200–213 (2016).

    Article  PubMed  Google Scholar 

  55. Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).

    Article  PubMed  Google Scholar 

  56. Sterelny, K. Adaptable individuals and innovative lineages. Phil. Trans. R. Soc. B 371, 20150196 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Henshilwood, C. S. & Marean, C. W. The origin of modern human behavior: critique of the models and their test implications. Curr. Anthropol. 44, 627–651 (2003).

    Article  PubMed  Google Scholar 

  58. Stoops, G., Marcelino, V. & Mees, F. (eds) Interpretation of Micromorphological Features of Soils and Regoliths (Elsevier, 2010).

  59. Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Soil Science Society of America, 2003).

  60. McPherron, S. P. Additional statistical and graphical methods for analyzing site formation processes using artifact orientations. PLoS ONE 13, e0190195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thomsen, K. J., Murray, A. S., Jain, M. & Bøtter-Jensen, L. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiat. Meas. 43, 1474–1486 (2008).

    Article  CAS  Google Scholar 

  62. Armitage, S. J. & Bailey, R. M. The measured dependence of laboratory beta dose rates on sample grain size. Radiat. Meas. 39, 123–127 (2005).

    Article  CAS  Google Scholar 

  63. Huntley, D. J. & Lamothe, M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can. J. Earth Sci. 38, 1093–1106 (2001).

    Article  CAS  Google Scholar 

  64. Jaffey, A. H., Flynn, K. F., Glendenin, L. E. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).

    Article  Google Scholar 

  65. Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).

    Article  Google Scholar 

  66. Holden, N. E. Total half-lives for selected nuclides. Pure Appl. Chem. 62, 941–958 (1990).

    Article  CAS  Google Scholar 

  67. Ludwig, K. R. Isoplot/Ex Version 3.75: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center Special Publication, 2010).

  68. Collins, B. & Steele, T. E. An often overlooked resource: ostrich (Struthio spp.) eggshell in the archaeological record. J. Archaeol. Sci. Rep. 13, 121–131 (2017).

    Google Scholar 

  69. Schmidt, P. How reliable is the visual identification of heat treatment on silcrete? A quantitative verification with a new method. Archaeol. Anthropol. Sci. 11, 713–726 (2017).

    Article  Google Scholar 

  70. Roberts, D. L. Age, Genesis and Significance of South African Coastal Belt Silcretes (Council for Geoscience, South Africa, 2003).

  71. Schmidt, P. et al. A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. J. Hum. Evol. 85, 22–34 (2015).

    Article  PubMed  Google Scholar 

  72. Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 (figshare, 2019); https://doi.org/10.6084/m9.figshare.7504448.v3

  73. World Atlas of Desertification 2nd edn (UNEP, 1997).

  74. Mucina, L. & Rutherford, M. C. The Vegetation of South Africa, Lesotho and Swaziland (South African National Biodiversity Institute, 2006).

  75. Cordova, C. E. C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quat. Int. 287, 121–140 (2013).

    Article  Google Scholar 

  76. Esteban, I. et al. Modern soil phytolith assemblages used as proxies for paleoscape reconstruction on the south coast of South Africa. Quat. Int. 434, 160–179 (2017).

    Article  Google Scholar 

  77. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  78. Chase, B. M. et al. Orbital controls on Namib Desert hydroclimate over the past 50,000 years. Geology 47, 867–871 (2019).

    Article  Google Scholar 

  79. Farmer, E. C., deMenocal, P. B. & Marchitto, T. M. Holocene and deglacial ocean temperature variability in the Benguela upwelling region: implications for low‐latitude atmospheric circulation. Paleoceanography 20, PA2018 (2005).

    Article  Google Scholar 

  80. Pichevin, L., Cremer, M., Giraudeau, J. & Bertrand, P. A 190 kyr record of lithogenic grain size on the Namibian slope: forging a tight link between past wind‐strength and coastal upwelling dynamics. Mar. Geol. 218, 81–96 (2005).

    Article  Google Scholar 

  81. Little, M. G. et al. Trade wind forcing of upwelling, seasonality, and Heinrich events as a response to sub‐Milankovitch climate variability. Paleoceanography 12, 568–576 (2005).

    Article  Google Scholar 

  82. Stuut, J.-B. et al. A 300‐kyr record of aridity and wind strength in southwestern Africa: inferences from grain‐size distributions of sediments on Walvis Ridge, SE Atlantic. Mar. Geol. 180, 221–233 (2002).

    Article  Google Scholar 

  83. Kandel, A. W. & Conard, N. J. Production sequences of ostrich eggshell beads and settlement dynamics in the Geelbek Dunes of the Western Cape, South Africa. J. Archaeol. Sci. 32, 1711–1721 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the following US National Science Foundation programmes: High-Risk Anthropology (T.E.S.), Archaeology (T.E.S.) and Archaeometry; the Leakey Foundation (T.E.S.); the University of California, Davis (T.E.S.); the Australian Research Council (A.M.); the Australian National University (A.M.); Max Planck Society (M.C.S.); the University of Wollongong (A.M.); and the Research Council of Norway Centers of Excellence project number 262618 (S.J.A.). Fieldwork was conducted under Heritage Western Cape Permit X120417JL07; P. and L. Visser (2008–2011) and I. Zaaiman (2014 to present) kindly provided access to the Varsche Rivier 260 Farm. We thank colleagues at the University of Cape Town Department of Archaeology, Iziko South African Museum and at ACO Associates; R. G. Klein, T. Weaver, A. Welz, M. Shaw, M. Young, and our student volunteers and workers for valuable support.

Author information

Authors and Affiliations

Authors

Contributions

T.E.S. and A.M. directed excavations at VR003; S.J.A. performed luminescence, and E.M.N. and W.D.S. uranium-series dating; M.C.S. conducted geoarchaeology (micromorphology), I.M. and R.R. sedimentology, A.F.B. fabric analysis, and M.A.L. lithic refit studies; K.C.B. prepared and analysed the phytolith samples with environmental context provided by B.M.C.; T.E.S. and S.E.L. conducted faunal analysis; T.E.S. and P.J.M. analysed the ostrich eggshell, and C.F.K. analysed the Iziko comparative sample; N.L.M. analysed the pigments; A.M. and C.A.O’D. analysed the stone artefacts; A.M., T.E.S., S.J.A., E.M.N., W.D.S., M.C.S., A.F.B., K.C.B., B.M.C., S.E.L., N.L.M., P.J.M., I.M. and J.O. wrote the manuscript.

Corresponding authors

Correspondence to Alex Mackay or Teresa E. Steele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology and Evolution thanks Irene Esteban, Marlize Lombard, Peter Mitchell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–25 and Tables 1–24.

Reporting Summary

Peer Review File

Supplementary Data

Spatial, lithic, faunal and pigment data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackay, A., Armitage, S.J., Niespolo, E.M. et al. Environmental influences on human innovation and behavioural diversity in southern Africa 92–80 thousand years ago. Nat Ecol Evol 6, 361–369 (2022). https://doi.org/10.1038/s41559-022-01667-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01667-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing