Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An old disk still capable of forming a planetary system

Subjects

Abstract

From the masses of the planets orbiting the Sun, and the abundance of elements relative to hydrogen, it is estimated that when the Solar System formed, the circumstellar disk must have had a minimum mass of around 0.01 solar masses within about 100 astronomical units of the star1,2,3,4. (One astronomical unit is the Earth–Sun distance.) The main constituent of the disk, gaseous molecular hydrogen, does not efficiently emit radiation from the disk mass reservoir5, and so the most common measure of the disk mass is dust thermal emission and lines of gaseous carbon monoxide6. Carbon monoxide emission generally indicates properties of the disk surface, and the conversion from dust emission to gas mass requires knowledge of the grain properties and the gas-to-dust mass ratio, which probably differ from their interstellar values7,8. As a result, mass estimates vary by orders of magnitude, as exemplified by the relatively old (3–10 million years) star TW Hydrae9,10, for which the range is 0.0005–0.06 solar masses11,12,13,14. Here we report the detection of the fundamental rotational transition of hydrogen deuteride from the direction of TW Hydrae. Hydrogen deuteride is a good tracer of disk gas because it follows the distribution of molecular hydrogen and its emission is sensitive to the total mass. The detection of hydrogen deuteride, combined with existing observations and detailed models, implies a disk mass of more than 0.05 solar masses, which is enough to form a planetary system like our own.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Herschel detection of HD in the TW Hya protoplanetary disk.
Figure 2: Model of the physical structure and HD emission of the TW Hya circumstellar disk.

References

  1. Kuiper, G. P. The formation of the planets, part III. J. R. Astron. Soc. Can. 50, 158–176 (1956)

    ADS  Google Scholar 

  2. Kusaka, T., Nakano, T. & Hayashi, C. Growth of solid particles in the primordial solar nebula. Prog. Theor. Phys. 44, 1580–1595 (1970)

    Article  ADS  CAS  Google Scholar 

  3. Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977)

    Article  ADS  Google Scholar 

  4. Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. 70 (suppl.). 35–53 (1981)

    Article  Google Scholar 

  5. Carmona, A. et al. A search for mid-infrared molecular hydrogen emission from protoplanetary disks. Astron. Astrophys. 477, 839–852 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924–945 (1990)

    Article  ADS  Google Scholar 

  7. Hartmann, L. Masses and mass distributions of protoplanetary disks. Phys. Scripta 014012 (2008)

  8. Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011)

    Article  ADS  Google Scholar 

  9. Barrado, Y. &. Navascués, D. On the age of the TW Hydrae association and 2M1207334–393254. Astron. Astrophys. 459, 511–518 (2006)

    Article  ADS  Google Scholar 

  10. Vacca, W. D. & Sandell, G. Near-infrared Spectroscopy of TW Hya: a revised spectral type and comparison with magnetospheric accretion models. Astrophys. J. 732, 8 (2011)

    Article  ADS  Google Scholar 

  11. Weintraub, D. A., Zuckerman, B. & Masson, C. R. Measurements of Keplerian rotation of the gas in the circumbinary disk around T Tauri. Astrophys. J. 344, 915–924 (1989)

    Article  ADS  CAS  Google Scholar 

  12. Calvet, N. et al. Evidence for a developing gap in a 10 Myr old protoplanetary disk. Astrophys. J. 568, 1008–1016 (2002)

    Article  ADS  Google Scholar 

  13. Thi, W.-F. et al. Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya. Constraining the disk gas mass. Astron. Astrophys. 518, L125 (2010)

    Article  ADS  Google Scholar 

  14. Gorti, U., Hollenbach, D., Najita, J. & Pascucci, I. Emission lines from the gas disk around TW Hydra and the origin of the inner hole. Astrophys. J. 735, 90 (2011)

    Article  ADS  Google Scholar 

  15. Natta, A. et al. in Protostars and Planets V 767–781 (Univ. Arizona Press, 2007)

  16. Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Pilbratt, G. et al. The Herschel Space Observatory. Astron. Astrophys. 518, 3–8 (2010)

    Article  Google Scholar 

  18. Poglitsch, A. et al. The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron. Astrophys. 518, L2 (2010)

    Article  ADS  Google Scholar 

  19. Hoff, W., Henning, T. & Pfau, W. The nature of isolated T Tauri stars. Astron. Astrophys. 336, 242–250 (1998)

    ADS  Google Scholar 

  20. Linsky, J. L. Deuterium abundance in the local ISM and possible spatial variations. Space Sci. Rev. 84, 285–296 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Lissauer, J. J. & Stevenson, D. J. in Protostars and Planets V 591–606 (Univ. Arizona Press, 2007)

    Google Scholar 

  22. Greaves, J. S. & Rice, W. K. M. Have protoplanetary discs formed planets? Mon. Not. R. Astron. Soc. 407, 1981–1988 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Mordasini, C., Alibert, Y., Benz, W., Klahr, H. & Henning, T. Extrasolar planet population synthesis. IV. Correlations with disk metallicity, mass, and lifetime. Astron. Astrophys. 541, A97 (2012)

    Article  ADS  Google Scholar 

  24. Tachihara, K., Neuhäuser, R. & Fukui, Y. Search for remnant clouds associated with the TW Hya association. Publ. Astron. Soc. Jpn 61, 585–591 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Hogerheijde, M. R. et al. Detection of the water reservoir in a forming planetary system. Science 334, 338–340 (2011)

    Article  ADS  CAS  Google Scholar 

  26. Dartois, E., Dutrey, A. & Guilloteau, S. Structure of the DM Tau outer disk: probing the vertical kinetic temperature gradient. Astron. Astrophys. 399, 773–787 (2003)

    Article  ADS  Google Scholar 

  27. Wright, C. M., van Dishoeck, E. F., Cox, P., Sidher, S. D. & Kessler, M. F. Infrared Space Observatory–Long Wavelength Spectrometer detection of the 112 micron HD J = 1 → 0 line toward the Orion Bar. Astrophys. J. 515, L29–L33 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Bertoldi, F., Timmermann, R., Rosenthal, D., Drapatz, S. & Wright, C. M. Detection of HD in the Orion molecular outflow. Astron. Astrophys. 346, 267–277 (1999)

    ADS  CAS  Google Scholar 

  29. Neufeld, D. A. et al. Spitzer observations of hydrogen deuteride. Astrophys. J. 647, L33–L36 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Brinch, C. & Hogerheijde, M. R. LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths. Astron. Astrophys. 523, A25 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech and by the US National Science Foundation under grant 1008800. This paper makes use of the following Atacama Large Millimeter/submillimeter Array (ALMA) data: ADS/JAO.ALMA#2011.0.00001.SV. ALMA is a partnership of ESO (representing its member states), the NSF (USA) and NINS (Japan), together with the NRC (Canada) and the NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

Author information

Authors and Affiliations

Authors

Contributions

E.A.B., L.I.C., U.G. and K.Z. performed the detailed calculations used in the analysis. J.D.G. reduced the Herschel data. S.M.A. provided detailed disk physical models and U.G. provided thermochemical models, both developed specifically for TW Hya. E.A.B. wrote the manuscript with revisions by N.J.E. All authors were participants in the discussion of results, determination of the conclusions and revision of the manuscript.

Corresponding author

Correspondence to Edwin A. Bergin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, additional references, Supplementary Table 1 and Supplementary Figure 1. (PDF 196 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergin, E., Cleeves, L., Gorti, U. et al. An old disk still capable of forming a planetary system. Nature 493, 644–646 (2013). https://doi.org/10.1038/nature11805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11805

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing