Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spitzer’s debris disk legacy from main-sequence stars to white dwarfs

Abstract

The Spitzer Space Telescope enabled the detection and characterization of infrared excess — attributed to thermal emission from circumstellar dust — towards more than 1,000 main-sequence stars and more than 40 white dwarfs. These systems have been dubbed ‘debris disks’ because they are believed to be planetary systems in which the observed dust is generated by collisions among otherwise undetected planetesimals, planetary embryos and planets. With its superb sensitivity and good spatial resolution, Spitzer revolutionized the study of debris disks, increasing the number of known systems by an order of magnitude and providing detailed disk demographics and properties for a substantial sample for the first time. In doing so, Spitzer set the stage for detailed characterization of the dust using Herschel, the Atacama Large Millimeter/submillimeter Array and high-contrast imaging instruments such as the Hubble Space Telescope’s NICMOS and STIS, the Very Large Telescope’s SPHERE, and the Gemini Planet Imager. Spitzer played a vital role in demonstrating that planetary systems are present and active around white dwarfs. Specifically, it showed that the origin of pollution in white dwarfs is circumstellar material. Finally, Spitzer’s longevity enabled time-domain studies of young debris disks that are actively forming terrestrial planets and rejuvenized the study of dusty white dwarfs. Spitzer’s legacy will endure into the next decade with discoveries expected from new instruments on SOFIA, the James Webb Space Telescope and SPHEREx.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The HR 8799 planetary system.
Fig. 2: The evolution in the amount of warm dust traced by 24 μm excess emission in exoplanetary systems.
Fig. 3: The evolution in the amount of cold dust traced by 70 μm excess emission in exoplanetary systems.
Fig. 4: Spitzer IRS spectra of HD 172555 and η Crv, two main-sequence debris disks with prominent 10 μm silicate emission features.
Fig. 5: The first identified white dwarf debris system G29−38.
Fig. 6: The incidence of infrared excess as a function of white dwarf temperatures.

Similar content being viewed by others

References

  1. Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star β Pictoris. Science 329, 57–59 (2010).

    ADS  Google Scholar 

  2. Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B. & Barman, T. Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).

    ADS  Google Scholar 

  3. Backman, D. E. & Paresce, F. in Protostars and Planets III (eds Levy, E. H. & Lunine, J. I.) 1253–1304 (Univ. Arizona Press, 1993).

  4. Strubbe, L. E. & Chiang, E. I. Dust dynamics, surface brightness profiles, and thermal spectra of debris disks: the case of AU Microscopii. Astrophys. J. 648, 652–665 (2006).

    ADS  Google Scholar 

  5. Artymowicz, P. Radiation pressure forces on particles in the Beta Pictoris system. Astrophys. J. Lett. 335, L79 (1988).

    ADS  Google Scholar 

  6. Wyatt, M. C. Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008).

    ADS  Google Scholar 

  7. Krivov, A. V. Debris disks: seeing dust, thinking of planetesimals and planets. Res. Astron. Astrophys. 10, 383–414 (2010).

    ADS  Google Scholar 

  8. Matthews, B. et al. Resolved imaging of the HR 8799 debris disk with Herschel. Astrophys. J. 780, 97 (2014).

    ADS  Google Scholar 

  9. Hughes, A. M., Duchêne, G. & Matthews, B. C. Debris disks: structure, composition, and variability. Annu. Rev. Astron. Astrophys. 56, 541–591 (2018).

    ADS  Google Scholar 

  10. Caroff, L., Moon, L. J., Backman, D. & Praton, E. (eds) Debris Disks and the Formation of Planets: A Symposium in Memory of Fred Gillett 9–19 (ASP Conference Series Vol. 324, Astronomical Society of the Pacific, 2004).

  11. Lacombe, P., Liebert, J., Wesemael, F. & Fontaine, G. G 74–7: a true DA, F (DAZ) white dwarf. Astrophys. J. 272, 660–664 (1983).

    ADS  Google Scholar 

  12. Fontaine, G. & Michaud, G. Diffusion time scales in white dwarfs. Astrophys. J. 231, 826–840 (1979).

    ADS  Google Scholar 

  13. Vauclair, G., Vauclair, S. & Greenstein, J. L. The chemical evolution of white dwarf atmospheres: diffusion and accretion. Astron. Astrophys. 80, 79–96 (1979).

    ADS  Google Scholar 

  14. Alcock, C., Fristrom, C. C. & Siegelman, R. On the number of comets around other single stars. Astrophys. J. 302, 462 (1986).

    ADS  Google Scholar 

  15. Zuckerman, B. & Becklin, E. E. Excess infrared radiation from a white dwarf — an orbiting brown dwarf? Nature 330, 138–140 (1987).

    ADS  Google Scholar 

  16. Graham, J. R., Matthews, K., Neugebauer, G. & Soifer, B. T. The infrared excess of G29-38 — a brown dwarf or dust? Astrophys. J. 357, 216–223 (1990).

    ADS  Google Scholar 

  17. Jura, M., Farihi, J. & Zuckerman, B. Externally polluted white dwarfs with dust disks. Astrophys. J. 663, 1285–1290 (2007).

    ADS  Google Scholar 

  18. Jura, M. A tidally disrupted asteroid around the white dwarf G29-38. Astrophys. J. Lett. 584, L91–L94 (2003).

    ADS  Google Scholar 

  19. Zuckerman, B., Koester, D., Reid, I. N. & Hünsch, M. Metal lines in DA white dwarfs. Astrophys. J. 596, 477–495 (2003).

    ADS  Google Scholar 

  20. von Hippel, T., Kuchner, M. J., Kilic, M., Mullally, F. & Reach, W. T. The new class of dusty DAZ white dwarfs. Astrophys. J. 662, 544–551 (2007).

    ADS  Google Scholar 

  21. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004).

    ADS  Google Scholar 

  22. Rieke, G. H. et al. The Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. Ser. 154, 25–29 (2004).

    ADS  Google Scholar 

  23. Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 18–24 (2004).

    ADS  Google Scholar 

  24. Kuchner, M. J. & Stark, C. C. Collisional grooming models of the Kuiper belt dust cloud. Astron. J. 140, 1007–1019 (2010).

    ADS  Google Scholar 

  25. Kenyon, S. J. & Bromley, B. C. Detecting the dusty debris of terrestrial planet formation. Astrophys. J. Lett. 602, L133–L136 (2004).

    ADS  Google Scholar 

  26. Kenyon, S. J. & Bromley, B. C. Prospects for detection of catastrophic collisions in debris disks. Astron. J. 130, 269–279 (2005).

    ADS  Google Scholar 

  27. Kenyon, S. J. & Bromley, B. C. Variations on debris disks: icy planet formation at 30–150 AU for 1–3 M main-sequence stars. Astrophys. J. Suppl. Ser. 179, 451–483 (2008).

    ADS  Google Scholar 

  28. Dominik, C. & Decin, G. Age dependence of the Vega phenomenon: theory. Astrophys. J. 598, 626–635 (2003).

    ADS  Google Scholar 

  29. Chen, C. H. et al. Spitzer IRS spectroscopy of IRAS-discovered debris disks. Astrophys. J. Suppl. Ser. 166, 351–377 (2006).

    ADS  Google Scholar 

  30. Chen, C. H. et al. The Spitzer Infrared Spectrograph debris disk catalog. I. Continuum analysis of unresolved targets. Astrophys. J. Suppl. Ser. 211, 25 (2014).

    ADS  Google Scholar 

  31. Mittal, T. et al. The Spitzer Infrared Spectrograph debris disk catalog. II. silicate feature analysis of unresolved targets. Astrophys. J. 798, 87 (2015).

    ADS  Google Scholar 

  32. Carpenter, J. M., Mamajek, E. E., Hillenbrand, L. A. & Meyer, M. R. Debris disks in the Upper Scorpius OB Association. Astrophys. J. 705, 1646–1671 (2009).

    ADS  Google Scholar 

  33. Chen, C. H. et al. A Magellan MIKE and Spitzer MIPS study of 1.5–10 M sun stars in Scorpius-Centaurus. Astrophys. J. 738, 122 (2011).

    ADS  Google Scholar 

  34. Chen, C. H., Pecaut, M., Mamajek, E. E., Su, K. Y. L. & Bitner, M. A Spitzer MIPS study of 2.5–20 M stars in Scorpius-Centaurus. Astrophys. J. 756, 133 (2012).

    ADS  Google Scholar 

  35. Currie, T. et al. The rise and fall of debris disks: MIPS observations of h and χ Persei and the evolution of mid-IR emission from planet formation. Astrophys. J. 672, 558–574 (2008).

    ADS  Google Scholar 

  36. Gorlova, N. et al. Spitzer 24 μm survey of debris disks in the Pleiades. Astrophys. J. 649, 1028–1042 (2006).

    ADS  Google Scholar 

  37. Gáspár, A. et al. The low level of debris disk activity at the time of the Late Heavy Bombardment: a Spitzer study of Praesepe. Astrophys. J. 697, 1578–1596 (2009).

    ADS  Google Scholar 

  38. Morales, F. Y. et al. Common warm dust temperatures around main-sequence stars. Astrophys. J. Lett. 730, L29 (2011).

    ADS  Google Scholar 

  39. Meyer, M. R. et al. The formation and evolution of planetary systems: placing our Solar System in context with Spitzer. Publ. Astron. Soc. Pac. 118, 1690–1710 (2006).

    ADS  Google Scholar 

  40. Su, K. Y. L. et al. Debris disk evolution around A stars. Astrophys. J. 653, 675–689 (2006).

    ADS  Google Scholar 

  41. Carpenter, J. M. et al. Formation and evolution of planetary systems: properties of debris dust around solar-type stars. Astrophys. J. Suppl. Ser. 181, 197–226 (2009).

    ADS  Google Scholar 

  42. Sierchio, J. M., Rieke, G. H., Su, K. Y. L. & Gáspár, A. The decay of debris disks around solar-type stars. Astrophys. J. 785, 33 (2014).

    ADS  Google Scholar 

  43. Meng, H. Y. A., Rieke, G. H., Su, K. Y. L. & Gáspár, A. The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation. Astrophys. J. 836, 34 (2017).

    ADS  Google Scholar 

  44. Hernández, J. et al. Spitzer observations of the Orion OB1 Association: second-generation dust disks at 5–10 Myr. Astrophys. J. 652, 472–481 (2006).

    ADS  Google Scholar 

  45. Wyatt, M. C. et al. Transience of hot dust around sun-like stars. Astrophys. J. 658, 569–583 (2007).

    ADS  Google Scholar 

  46. Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R. & Walsh, K. J. in Protostars and Planets VI (eds Beuther, H. et al.) 595–618 (Univ. Arizona Press, 2014).

  47. Agnor, C. & Asphaug, E. Accretion efficiency during planetary collisions. Astrophys. J. Lett. 613, L157–L160 (2004).

    ADS  Google Scholar 

  48. Stewart, S. T. & Leinhardt, Z. M. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophys. J. Lett. 751, 32 (2012).

    ADS  Google Scholar 

  49. Chambers, J. E. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus 224, 43–56 (2013).

    ADS  Google Scholar 

  50. Genda, H., Kobayashi, H. & Kokubo, E. Warm debris disks produced by giant impacts during terrestrial planet formation. Astrophys. J. 810, 136 (2015).

    ADS  Google Scholar 

  51. Balog, Z. et al. Spitzer/IRAC-MIPS survey of NGC 2451A and B: debris disks at 50–80 million years. Astrophys. J. 698, 1989–2013 (2009).

    ADS  Google Scholar 

  52. Kennedy, G. M. & Wyatt, M. C. The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability. Mon. Not. R. Astron. Soc. 433, 2334–2356 (2013).

    ADS  Google Scholar 

  53. Jackson, A. P. & Wyatt, M. C. Debris from terrestrial planet formation: the Moon-forming collision. Mon. Not. R. Astron. Soc. 425, 657–679 (2012).

    ADS  Google Scholar 

  54. Melis, C. et al. Copious amounts of hot and cold dust orbiting the main sequence A-type stars HD 131488 and HD 121191. Astrophys. J. 778, 12 (2013).

    ADS  Google Scholar 

  55. Meng, H. Y. A. et al. Planetary collisions outside the Solar System: time domain characterization of extreme debris disks. Astrophys. J. 805, 77 (2015).

    ADS  Google Scholar 

  56. Rhee, J. H., Song, I. & Zuckerman, B. Warm dust in the terrestrial planet zone of a Sun-like Pleiades star: collisions between planetary embryos? Astrophys. J. 675, 777–783 (2008).

    ADS  Google Scholar 

  57. Lisse, C. M. et al. Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the 12 Myr HD172555 system. Astrophys. J. 701, 2019–2032 (2009).

    ADS  Google Scholar 

  58. Fujiwara, H. et al. Silica-rich bright debris disk around HD 15407A. Astrophys. J. Lett. 749, L29 (2012).

    ADS  Google Scholar 

  59. Johnson, B. C. et al. A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system. Astrophys. J. 761, 45 (2012).

    ADS  Google Scholar 

  60. Olofsson, J. et al. Transient dust in warm debris disks. Detection of Fe-rich olivine grains. Astron. Astrophys. 542, A90 (2012).

    Google Scholar 

  61. Morlok, A. et al. Dust from collisions: a way to probe the composition of exo-planets? Icarus 239, 1–14 (2014).

    ADS  Google Scholar 

  62. Kral, Q., Thébault, P., Augereau, J.-C., Boccaletti, A. & Charnoz, S. Signatures of massive collisions in debris discs. A self-consistent numerical model. Astron. Astrophys. 573, A39 (2015).

    Google Scholar 

  63. Kenyon, S. J. & Bromley, B. C. Variations on debris disks III. Collisional cascades and giant impacts in the terrestrial zones of solar-type stars. Astrophys. J. 817, 51 (2016).

    ADS  Google Scholar 

  64. Meng, H. Y. A. et al. Variability of the infrared excess of extreme debris disks. Astrophys. J. Lett. 751, L17 (2012).

    ADS  Google Scholar 

  65. Meng, H. Y. A. et al. Large impacts around a solar-analog star in the era of terrestrial planet formation. Science 345, 1032–1035 (2014).

    ADS  Google Scholar 

  66. Su, K. Y. L. et al. Extreme debris disk variability: exploring the diverse outcomes of large asteroid impacts during the era of terrestrial planet formation. Astron. J. 157, 202 (2019).

    ADS  Google Scholar 

  67. Asphaug, E. & Reufer, A. Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nat. Geosci. 7, 564–568 (2014).

    ADS  Google Scholar 

  68. Beichman, C. A. et al. Multi-epoch observations of HD 69830: high-resolution spectroscopy and limits to variability. Astrophys. J. 743, 85 (2011).

    ADS  Google Scholar 

  69. Lovis, C. et al. An extrasolar planetary system with three Neptune-mass planets. Nature 441, 305–309 (2006).

    ADS  Google Scholar 

  70. Bryden, G. et al. Planets and debris disks: results from a Spitzer/MIPS search for infrared excess. Astrophys. J. 705, 1226–1236 (2009).

    ADS  Google Scholar 

  71. Moro-Martín, A. et al. Locating planetesimal belts in the multiple-planet systems HD 128311, HD 202206, HD 82943, and HR 8799. Astrophys. J. 717, 1123–1139 (2010).

    ADS  Google Scholar 

  72. Faber, P. & Quillen, A. C. The total number of giant planets in debris discs with central clearings. Mon. Not. R. Astron. Soc. 382, 1823–1828 (2007).

    ADS  Google Scholar 

  73. Ballering, N. P., Rieke, G. H., Su, K. Y. L. & Montiel, E. A Trend between cold debris disk temperature and stellar type: implications for the formation and evolution of wide-orbit planets. Astrophys. J. 775, 55 (2013).

    ADS  Google Scholar 

  74. Kennedy, G. M. & Wyatt, M. C. Do two-temperature debris discs have multiple belts? Mon. Not. R. Astron. Soc. 444, 3164–3182 (2014).

    ADS  Google Scholar 

  75. Pawellek, N. et al. Disk radii and grain sizes in herschel-resolved debris disks. Astrophys. J. 792, 65 (2014).

    ADS  Google Scholar 

  76. Wyatt, M. C. Dust in resonant extrasolar Kuiper belts: grain size and wavelength dependence of disk structure. Astrophys. J. 639, 1153–1165 (2006).

    ADS  Google Scholar 

  77. Booth, M. et al. Resolved debris discs around A stars in the Herschel DEBRIS survey. Mon. Not. R. Astron. Soc. 428, 1263–1280 (2013).

    ADS  Google Scholar 

  78. Aumann, H. H. IRAS observations of matter around nearby stars. Publ. Astron. Soc. Pac. 97, 885–891 (1985).

    ADS  Google Scholar 

  79. Stapelfeldt, K. R. et al. First look at the fomalhaut debris disk with the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 458–462 (2004).

    ADS  Google Scholar 

  80. Wyatt, M. C. et al. How observations of circumstellar disk asymmetries can reveal hidden planets: pericenter glow and its application to the HR 4796 disk. Astrophys. J. 527, 918–944 (1999).

    ADS  Google Scholar 

  81. Kalas, P., Graham, J. R. & Clampin, M. A planetary system as the origin of structure in Fomalhaut’s dust belt. Nature 435, 1067–1070 (2005).

    ADS  Google Scholar 

  82. Su, K. Y. L. et al. The Vega debris disk: a surprise from Spitzer. Astrophys. J. 628, 487–500 (2005).

    ADS  Google Scholar 

  83. Su, K. Y. L. et al. The debris disk around HR 8799. Astrophys. J. 705, 314–327 (2009).

    ADS  Google Scholar 

  84. Su, K. Y. L. et al. Debris distribution in HD 95086 — a young analog of HR 8799. Astrophys. J. 799, 146 (2015).

    ADS  Google Scholar 

  85. Backman, D. et al. Epsilon Eridani’s planetary debris disk: structure and dynamics based on Spitzer and Caltech Submillimeter Observatory observations. Astrophys. J. 690, 1522–1538 (2009).

    ADS  Google Scholar 

  86. Greaves, J. S. et al. A dust ring around ε Eridani: analog to the young Solar System. Astrophys. J. Lett. 506, L133–L137 (1998).

    ADS  Google Scholar 

  87. Reidemeister, M. et al. The cold origin of the warm dust around ε Eridani. Astron. Astrophys. 527, A57 (2011).

  88. Greaves, J. S. et al. Extreme conditions in a close analog to the young Solar System: Herschel observations of epsilon Eridani. Astrophys. J. Lett. 791, L11 (2014).

  89. Su, K. Y. L. et al. The inner 25 au debris distribution in the ε Eri system. Astron. J. 153, 226 (2017).

    ADS  Google Scholar 

  90. Mawet, D. et al. Deep exploration of ε Eridani with Keck Ms-band vortex coronagraphy and radial velocities: mass and orbital parameters of the giant exoplanet. Astron. J. 157, 33 (2019).

    ADS  Google Scholar 

  91. Su, K. Y. L. et al. Asteroid belts in debris disk twins: Vega and Fomalhaut. Astrophys. J. 763, 118 (2013).

    ADS  Google Scholar 

  92. Geiler, F. & Krivov, A. V. Does warm debris dust stem from asteroid belts? Mon. Not. R. Astron. Soc. 468, 959–970 (2017).

    ADS  Google Scholar 

  93. Bonsor, A., Augereau, J. C. & Thébault, P. Scattering of small bodies by planets: a potential origin for exozodiacal dust? Astron. Astrophys. 548, A104 (2012).

    Google Scholar 

  94. Nesvorný, D. et al. cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).

    ADS  Google Scholar 

  95. Lisse, C. M. et al. Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η Corvi at 1 Gyr. Astrophys. J. 747, 93 (2012).

    ADS  Google Scholar 

  96. Marino, S. et al. ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3–30 M planets? Mon. Not. R. Astron. Soc. 465, 2595–2615 (2017).

    ADS  Google Scholar 

  97. Strom, R. G., Malhotra, R., Ito, T., Yoshida, F. & Kring, D. A. The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850 (2005).

    ADS  Google Scholar 

  98. Malhotra, R. Resonant Kuiper belt objects: a review. Geosci. Lett. 6, 12 (2019).

    ADS  Google Scholar 

  99. Farihi, J. Circumstellar debris and pollution at white dwarf stars. New Astron. Rev. 71, 9–34 (2016).

    ADS  Google Scholar 

  100. Jura, M., Farihi, J. & Zuckerman, B. Six white dwarfs with circumstellar silicates. Astron. J. 137, 3191–3197 (2009).

    ADS  Google Scholar 

  101. Debes, J. H., Hoard, D. W., Wachter, S., Leisawitz, D. T. & Cohen, M. The WIRED Survey. II. Infrared excesses in the SDSS DR7 white dwarf catalog. Astrophys. J. Suppl. Ser. 197, 38 (2011).

    ADS  Google Scholar 

  102. Hoard, D. W., Debes, J. H., Wachter, S., Leisawitz, D. T. & Cohen, M. The WIRED Survey. IV. new dust disks from the McCook & Sion white dwarf catalog. Astrophys. J. 770, 21 (2013).

    ADS  Google Scholar 

  103. Barber, S. D., Kilic, M., Brown, W. R. & Gianninas, A. Dusty WDs in the WISE All Sky Survey and SDSS. Astrophys. J. 786, 77 (2014).

    ADS  Google Scholar 

  104. Reach, W. T., Lisse, C., von Hippel, T. & Mullally, F. The dust cloud around the white dwarf G 29–38 II. Spectrum from 5 to 40 μm and mid-infrared photometric variability. Astrophys. J. 693, 697–712 (2009).

    ADS  Google Scholar 

  105. Schatzman, E. Théorie du débit d’énergie des naines blanches. Ann. Astrophys. 8, 143 (1945).

    ADS  Google Scholar 

  106. Barber, S. D., Belardi, C., Kilic, M. & Gianninas, A. Remnant planetary systems around bright white dwarfs. Mon. Not. R. Astron. Soc. 459, 1415–1421 (2016).

    ADS  Google Scholar 

  107. Mullally, F. et al. A Spitzer white dwarf infrared survey. Astrophys. J. Suppl. Ser. 171, 206–218 (2007).

    ADS  Google Scholar 

  108. Wilson, T. G., Farihi, J., Gänsicke, B. T. & Swan, A. The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble. Mon. Not. R. Astron. Soc. 487, 133–146 (2019).

    ADS  Google Scholar 

  109. Farihi, J., Jura, M. & Zuckerman, B. Infrared signatures of disrupted minor planets at white dwarfs. Astrophys. J. 694, 805–819 (2009).

    ADS  Google Scholar 

  110. Xu, S. et al. Compositions of planetary debris around dusty white dwarfs. Astron. J. 158, 242 (2019).

    ADS  Google Scholar 

  111. Bonsor, A., Farihi, J., Wyatt, M. C. & van Lieshout, R. Infrared observations of white dwarfs and the implications for the accretion of dusty planetary material. Mon. Not. R. Astron. Soc. 468, 154–164 (2017).

    ADS  Google Scholar 

  112. Kenyon, S. J. & Bromley, B. C. Numerical simulations of gaseous disks generated from collisional cascades at the Roche limits of white dwarf stars. Astrophys. J. 850, 50 (2017).

    ADS  Google Scholar 

  113. Rappaport, S. et al. WD 1145+017: optical activity during 2016–2017 and limits on the X-ray flux. Mon. Not. R. Astron. Soc. 474, 933–946 (2018).

    ADS  Google Scholar 

  114. Jura, M. & Young, E. D. Extrasolar cosmochemistry. Annu. Rev. Earth Planet. Sci. 42, 45–67 (2014).

    ADS  Google Scholar 

  115. Xu, S., Jura, M., Koester, D., Klein, B. & Zuckerman, B. Elemental compositions of two extrasolar rocky planetesimals. Astrophys. J. 783, 79 (2014).

    ADS  Google Scholar 

  116. Veras, D. Post-main-sequence planetary system evolution. R. Soc. Open Sci. 3, 150571 (2016).

    ADS  MathSciNet  Google Scholar 

  117. Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002).

    ADS  Google Scholar 

  118. Bonsor, A., Mustill, A. J. & Wyatt, M. C. Dynamical effects of stellar mass-loss on a Kuiper-like belt. Mon. Not. R. Astron. Soc. 414, 930–939 (2011).

    ADS  Google Scholar 

  119. Malamud, U. & Perets, H. B. Post-main sequence evolution of icy minor planets: implications for water retention and white dwarf pollution. Astrophys. J. 832, 160 (2016).

    ADS  Google Scholar 

  120. Rafikov, R. R. Metal accretion onto white dwarfs caused by Poynting–Robertson drag on their debris disks. Astrophys. J. Lett. 732, L3 (2011).

    ADS  Google Scholar 

  121. Bochkarev, K. V. & Rafikov, R. R. Global modeling of radiatively driven accretion of metals from compact debris disks onto white dwarfs. Astrophys. J. 741, 36 (2011).

    ADS  Google Scholar 

  122. Girven, J. et al. Constraints on the lifetimes of disks resulting from tidally destroyed rocky planetary bodies. Astrophys. J. 749, 154 (2012).

    ADS  Google Scholar 

  123. Dufour, P., Kilic, M. & Fontaine, G. et al. Detailed compositional analysis of the heavily polluted DBZ white dwarf SDSS J073842.56+183509.06: a window on planet formation? Astrophys. J. 749, 6 (2012).

    ADS  Google Scholar 

  124. Kenyon, S. J. & Bromley, B. C. Numerical simulations of collisional cascades at the Roche limits of white dwarf stars. Astrophys. J. 844, 116 (2017).

    ADS  Google Scholar 

  125. Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

    ADS  Google Scholar 

  126. Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseous metal disk around a white dwarf. Science 314, 1908–1910 (2006).

    ADS  Google Scholar 

  127. Debes, J. H. et al. Detection of weak circumstellar gas around the DAZ white dwarf WD 1124–293: evidence for the accretion of multiple asteroids. Astrophys. J. 754, 59 (2012).

    ADS  Google Scholar 

  128. Dennihy, E. et al. Rapid evolution of the gaseous exoplanetary debris around the white dwarf star HE 1349-2305. Astrophys. J. 854, 40 (2018).

    ADS  Google Scholar 

  129. Xu, S. & Jura, M. The drop during less than 300 days of a dusty white dwarf’s infrared luminosity. Astrophys. J. Lett. 792, L39 (2014).

    ADS  Google Scholar 

  130. Xu, S. et al. Infrared variability of two dusty white dwarfs. Astrophys. J. 866, 108 (2018).

    ADS  Google Scholar 

  131. Farihi, J. et al. Dust production and depletion in evolved planetary systems. Mon. Not. R. Astron. Soc. 481, 2601–2611 (2018).

    ADS  Google Scholar 

  132. Wang, T.-g et al. An ongoing mid-infrared outburst in the white dwarf 0145+234: catching in action the tidal disruption of an exoasteroid? Astrophys. J. Lett. 886, L5 (2019).

    ADS  Google Scholar 

  133. Swan, A., Farihi, J. & Wilson, T. G. Most white dwarfs with detectable dust discs show infrared variability. Mon. Not. R. Astron. Soc. 484, L109–L113 (2019).

    ADS  Google Scholar 

  134. Wyatt, M. C., Farihi, J., Pringle, J. E. & Bonsor, A. Stochastic accretion of planetesimals on to white dwarfs: constraints on the mass distribution of accreted material from atmospheric pollution. Mon. Not. R. Astron. Soc. 439, 3371–3391 (2014).

    ADS  Google Scholar 

  135. Rafikov, R. R. Runaway accretion of metals from compact discs of debris on to white dwarfs. Mon. Not. R. Astron. Soc. 416, L55–L59 (2011).

    ADS  Google Scholar 

  136. Hernández, J. et al. A Spitzer Space Telescope study of disks in the young σ Orionis cluster. Astrophys. J. 662, 1067–1081 (2007).

    ADS  Google Scholar 

  137. Rebull, L. M. et al. Spitzer MIPS observations of stars in the β Pictoris moving group. Astrophys. J. 681, 1484–1504 (2008).

    ADS  Google Scholar 

  138. Sierchio, J. M. et al. Debris disks around solar-type stars: observations of the Pleiades with the Spitzer Space Telescope. Astrophys. J. 712, 1421–1432 (2010).

    ADS  Google Scholar 

  139. Cieza, L. A., Cochran, W. D. & Augereau, J.-C. Spitzer observations of the Hyades: circumstellar debris disks at 625 Myr of age. Astrophys. J. 679, 720–731 (2008).

    ADS  Google Scholar 

  140. Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).

    ADS  Google Scholar 

  141. Matthews, B. et al. Resolved imaging of the HR 8799 debris disk with Herschel. Astrophys. J. 780, 97 (2014).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.H.C., K.Y.L.S and S.X. jointly outlined the high-level scope and content of the article. C.H.C. was the principal author of the Abstract, introductory, ‘Main-sequence star debris disks’ and ‘Summary and outlook’ sections. In addition, she wrote a large part of the ‘Planetary system evolution’ section. K.Y.L.S. was the principal author of the ‘Terrestrial planet formation and giant collisions’ section, and contributed to the ‘Planetary system evolution’ section. S.X. was the principal author of the section on white dwarf debris disks.

Corresponding author

Correspondence to Christine H. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C.H., Su, K.Y.L. & Xu, S. Spitzer’s debris disk legacy from main-sequence stars to white dwarfs. Nat Astron 4, 328–338 (2020). https://doi.org/10.1038/s41550-020-1067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1067-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing