Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Cenozoic record of the equatorial Pacific carbonate compensation depth

Abstract

Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0–3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the position of the CCD and lysocline, and their relationship to ocean bathymetry, carbonate accumulation rate and CaCO 3 content.
Figure 2: CCD and carbonate accumulation rate reconstruction compared with published benthic foraminiferal δ18O and δ13C values and atmospheric CO2.
Figure 3: CCD predicted by the GENIE steady state model.

Similar content being viewed by others

References

  1. Lyle, M. et al. Pacific Ocean and Cenozoic evolution of climate. Rev. Geophys 46, RG2002, http://dx.doi.org/10.1029/2005RG000190 (2008)

    Article  ADS  Google Scholar 

  2. Pälike, H. et al. Expedition 320/321 summary. Proc. IODP 320/321,. doi:10.2204/iodp.proc.320321.2010 (2010)

    Google Scholar 

  3. Broecker, W. S. & Peng, T.-H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1, 15–29 (1987)

    Article  ADS  CAS  Google Scholar 

  4. Ridgwell, A. & Zeebe, R. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Van Andel, T. H., Heath, G. R. & Moore, T. C., Jr Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data. Geol. Soc. Am. 143, 1–134 (1975)

    Google Scholar 

  6. Lyle, M. Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18, 1059, http://dx.doi.org/10.1029/2002PA000777 (2003)

    Article  ADS  Google Scholar 

  7. Peterson, L. C. & Backman, J. Late Cenozoic carbonate accumulation and the history of the carbonate compensation depth in the western equatorial Indian ocean. Proc. ODP Sci. Res. 115, 467–508 (1990)

    Google Scholar 

  8. Lyle, M. W., Olivarez Lyle, A., Backman, J. & Tripati, A. Biogenic sedimentation in the Eocene equatorial Pacific—the stuttering greenhouse and Eocene carbonate compensation depth. Proc. ODP Sci. Res. 199, 1–35 (2005)

    Google Scholar 

  9. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Edmond, J. M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258, 1594–1597 (1992)

    Article  ADS  CAS  Google Scholar 

  11. Lear, C. H., Elderfield, H. & Wilson, P. A. A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth Planet. Sci. Lett. 208, 69–84 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012)

    Article  ADS  CAS  Google Scholar 

  13. Peucker-Ehrenbrink, B. & Ravizza, G. The marine osmium isotope record. Terra Nova 12, 205–219 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Leon-Rodriguez, L. & Dickens, G. R. Constraints on ocean acidification associated with rapid and massive carbon injections: the early Paleogene record at Ocean Drilling Program Site 1215, equatorial Pacific Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 409–420 (2010)

    Article  Google Scholar 

  15. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nature Geosci. 4, 418–420 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Bohaty, S. M., Zachos, J. C., Florindo, F. & Delaney, M. L. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24, PA2207, http://dx.doi.org/10.1029/2008PA001676 (2009)

    Article  ADS  Google Scholar 

  18. Spofforth, D. J. A. et al. Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys. Paleoceanography 25, PA3210, http://dx.doi.org/10.1029/2009PA001738 (2010)

    Article  ADS  Google Scholar 

  19. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Merico, A., Tyrrell, T. & Wilson, P. A. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall. Nature 452, 979–982 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Lyle, M. W., Dadey, K. & Farrell, J. The late Miocene (11–8 Ma) eastern Pacific carbonate crash: evidence for reorganization of deep-water circulation by the closure of the Panama Gateway Proc. ODP Sci. Res. 138, 821–837 (1995)

    Google Scholar 

  22. Edgar, K. M., Wilson, P. A., Sexton, P. F. & Suganuma, Y. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature 448, 908–911 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Moore, T. C., Jr & Jarrard, R. D. Olivarez Lyle, A. & Lyle, M. W. Eocene biogenic silica accumulation rates at the Pacific equatorial divergence zone. Paleoceanography 23, PA2202, http://dx.doi.org/10.1029/2007PA001514 (2008)

    Article  ADS  Google Scholar 

  24. Olivarez Lyle, A. & Lyle, M. W. carbon and barium in Eocene sediments: possible controls on nutrient recycling in the Eocene equatorial Pacific Ocean Proc. ODP Sci. Res. 199, 1–33 (2005)

    Google Scholar 

  25. Olivarez Lyle, A. & Lyle, M. W. Missing organic carbon in Eocene marine sediments: is metabolism the biological feedback that maintains end-member climates? Paleoceanography 21, PA2007, http://dx.doi.org/10.1029/2005PA001230 (2006)

    Article  ADS  Google Scholar 

  26. Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36, 315–318 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci. 3, 196–200 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Zeebe, R. E. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4. Geoscientific Model Dev. 5, 149–166 (2012)

    Article  ADS  Google Scholar 

  29. Uchikawa, J. & Zeebe, R. E. Influence of terrestrial weathering on ocean acidification and the next glacial inception. Geophys. Res. Lett. 35, L23608, http://dx.doi.org/10.1029/2008GL035963 (2008)

    Article  ADS  Google Scholar 

  30. Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C. & Cooper, M. J. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114–1117 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Stuecker, M. F. & Zeebe, R. E. Ocean chemistry and atmospheric CO2 sensitivity to carbon perturbations throughout the Cenozoic. Geophys. Res. Lett. 37, L03609, http://dx.doi.org/10.1029/2009GL041436 (2010)

    Article  ADS  Google Scholar 

  32. Tyrrell, T. & Zeebe, R. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68, 3521–3530 (2004)

    Article  ADS  CAS  Google Scholar 

  33. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983)

    Article  ADS  CAS  Google Scholar 

  34. Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4, 87–104 (2007)

    Article  ADS  CAS  Google Scholar 

  35. Archer, D. & Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994)

    Article  ADS  CAS  Google Scholar 

  36. Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new, mechanistic model for organic carbon fluxes in the ocean: based on the quantitative association of POC with ballast minerals. Deep Sea Res. II 49, 219–236 (2001)

    Article  ADS  Google Scholar 

  37. Ridgwell, A. An end to the “rain ratio” reign? Geochem. Geophys. Geosyst. 4, 1051, http://dx.doi.org/10.1029/2003GC000512 (2003)

    Article  ADS  Google Scholar 

  38. Westerhold, T. et al. Revised composite depth scales and integration of IODP Sites U1331–U1334 and ODP Sites 1218–1220. Proc. IODP 320/321, 1–137 (2012)

    Google Scholar 

  39. Archer, D. Modeling the calcite lysocline. J. Geophys. Res. C 96, 17037–17050 (1991)

    Article  ADS  Google Scholar 

  40. Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011)

    Article  ADS  CAS  Google Scholar 

  41. Calcagno, P. & Cazenave, A. Subsidence of the sea-floor in the Atlantic and Pacific Oceans — regional and large-scale variations. Earth Planet. Sci. Lett. 126, 473–492 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research used samples and data provided by IODP. We thank the masters and crew of IODP Expeditions 320 and 321. H.P. acknowledges support from the Philip Leverhulme Prize, the BIK-F, and NERC grants NE/H000089/1, NE/H020136/1, NE/G003270/1, NE/F003641/1, NE/H022554/1 and NE/I006168/1. We acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton, in the completion of this work. We thank M. Palmer and D. Teagle for discussions. E.J.R. is a Visiting Fellow at the Research School of Earth Sciences, The Australian National University.

Author information

Authors and Affiliations

Authors

Contributions

H.P. and A.R. wrote the manuscript. H.P., A.R., C.O.J.C. and R.E.Z. contributed to the modelling work. All authors contributed to data analysis, interpretation, manuscript editing or discussions.

Corresponding author

Correspondence to Heiko Pälike.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-14 and Supplementary References. (PDF 1104 kb)

Supplementary Data

This file contains Supplementary Table 1, which contains all data underlying the CCD reconstruction as well as the main CCD history. (XLS 1117 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pälike, H., Lyle, M., Nishi, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012). https://doi.org/10.1038/nature11360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11360

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing