Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The oxidation state of Hadean magmas and implications for early Earth’s atmosphere

Abstract

Magmatic outgassing of volatiles from Earth’s interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago1. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron–wüstite buffer would yield volatile species such as CH4, H2, H2S, NH3 and CO, whereas melts close to the fayalite–magnetite–quartz buffer would be similar to present-day conditions and would be dominated by H2O, CO2, SO2 and N2 (refs 14). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth’s history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching 4,400 Myr (refs 58). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite–magnetite–quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas2,3,4,9,10 as early as 4,350 Myr before present. These results suggest that outgassing of Earth’s interior later than 200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental calibration, relating melt oxygen fugacity to zircon Ce anomalies and temperature.
Figure 2: Oxygen fugacity and oxygen isotope plots for natural samples using the experimental calibration.
Figure 3: Oxygen fugacities of Hadean melts plotted against zircon crystallization age.

References

  1. Kasting, J. F. Earth’s early atmosphere. Science 259, 920–926 (1993)

    Article  ADS  CAS  Google Scholar 

  2. Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Delano, J. W. Redox history of the Earth's interior since 3900 Ma: implications for prebiotic molecules. Orig. Life Evol. Biosph. 31, 311–341 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Burgisser, A. & Scaillet, B. Redox evolution of a degassing magma rising to the surface. Nature 445, 194–197 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Cavosie, A. J., Valley, J. W. & Wilde, S. A. &. Edinburgh Ion Microprobe Facility. Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Cavosie, A. J., Valley, J. W. & Wilde, S. A. &. Edinburgh Ion Microprobe Facility. Correlated microanalysis of zircon: trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex 3900 Ma detrital grains. Geochim. Cosmochim. Acta 69, 637–648 (2006)

    Google Scholar 

  7. Watson, E. B. & Harrison, T. M. New thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–844 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Hopkins, M., Harrison, T. M. & Manning, C. M. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Berry, A. J. Danyushevsky, L. V., O’Neill, H. St. C., Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Mallmann, G. & O’Neill, H. St. C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc,Ti, Cr, Fe, Ga,Y, Zr and Nb). J. Petrol. 50, 1765–1794 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Carmichael, I. S. E. & Ghiorso, M. S. The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases. Rev. Mineral. 24, 191–212 (1990)

    CAS  Google Scholar 

  12. Cherniak, D. J., Hanchar, J. M. & Watson, E. B. Rare-earth diffusion in zircon. Chem. Geol. 134, 289–301 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Rubatto, D. & Hermann, J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem. Geol. 241, 38–61 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Thomas, J. B., Bodnar, R. J., Shimizu, N. & Sinha, A. K. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim. Cosmochim. Acta 66, 2887–2901 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Hinton, R. W. & Upton, B. G. J. The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta 55, 3287–3302 (1991)

    Article  ADS  CAS  Google Scholar 

  16. Sano, Y., Terada, K. & Fukuoka, T. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol. 184, 217–230 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Fu, B. et al. Ti-in-zircon thermometry: applications and limitations. Contrib. Mineral. Petrol. 156, 197–215 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Sato, M., Hickling, N. L. & McLane, J. E. in Proc. Fourth Lunar Science Conference Vol. 1 (ed. Grose, W. A.) 1061–1079 (Geochim Cosmochim Acta Suppl. 4, Pergamon, 1973)

    Google Scholar 

  19. Taylor, D. J., McKeegan, K. D. & Harrison, T. M. Lu–Hf zircon evidence for rapid lunar differentiation. Earth Planet. Sci. Lett. 279, 157–164 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Watson, E. B. & Harrison, T. M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64, 295–304 (1983)

    Article  ADS  CAS  Google Scholar 

  22. Coogan, L. A. & Hinton, R. W. Do trace element compositions of detrital zircons require Hadean continental crust? Geology 34, 633–636 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Schmitt, A. K. et al. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology. Earth Planet. Sci. Lett. 302, 349–358 (2011)

    Article  ADS  CAS  Google Scholar 

  24. Cavosie, A. J., Kita, N. K. & Valley, J. W. Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am. Mineral. 94, 926–934 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Herd, C. D. K., Borg, L. E. & Jones, J. H. Oxygen fugacity and geochemical variations in the Martian basalts: implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 66, 2025–2036 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Hildreth, W. & Wilson, C. J. N. Compositional zoning of the Bishop Tuff. J. Petrol. 48, 951–999 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Kleine, T., Munker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Tian, F., Toon, O. B., Pavlov, A. A. & De Stereck, H. A hydrogen-rich early Earth atmosphere. Science 308, 1014–1017 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Reid, M. R., Vazquez, J. A. & Schmitt, A. K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib. Mineral. Petrol. 161, 293–311 (2011)

    Article  ADS  CAS  Google Scholar 

  31. Trail, D. Watson, E. B. & Thomas, J. B. The incorporation of OH into zircon. Am. Mineral. 96, 60–67 (2011)

    Article  ADS  CAS  Google Scholar 

  32. Watson, E. B., Wark, D. A. & Thomas, J. B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433 (2006)

    Article  ADS  CAS  Google Scholar 

  33. Ayers, J. C., Brenan, J. B., Watson, E. B., Wark, D. A. & Minarik, W. G. A new capsule technique for hydrothermal experiments using the piston cylinder apparatus. Am. Mineral. 77, 1080–1086 (1992)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NASA Astrobiology Institute (grant no. NNA09DA80A to The New York Center for Astrobiology).

Author information

Authors and Affiliations

Authors

Contributions

E.B.W. identified the importance of investigating redox sensitive elements in zircon. D.T. designed the experiments and took measurements. D.T. wrote the manuscript and interpreted the data with significant contributions from E.B.W. and N.D.T.

Corresponding author

Correspondence to Dustin Trail.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figure 1 and legend. (PDF 170 kb)

Supplementary Tables

This file contains Supplementary Tables 1-5 comprising: 1) Starting oxide compositions for experiments; 2) Glass compositions analyzed by electron microprobe for Experiments; 3) Zircon compositions analyzed by electron microprobe for experiments; 4) Calculated zircon-melt partition coefficients using the data in Tables 3 and 4 and 5) Compiled literature data used to construct Figures 2 and 3. (XLS 121 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trail, D., Watson, E. & Tailby, N. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79–82 (2011). https://doi.org/10.1038/nature10655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10655

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing