Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subsurface water and clay mineral formation during the early history of Mars

Abstract

Clay minerals, recently discovered to be widespread in Mars’s Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars’s surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clay mineral distribution and diversity on Mars.
Figure 2: Chemical and mineralogical changes observed during aqueous alteration of basalt.
Figure 3: Compositional stratigraphy of clay-bearing units.
Figure 4: Timeline of major processes in Mars history.
Figure 5: Evolution of aqueous environments during the first billion years of Mars history.

Similar content being viewed by others

References

  1. Guggenheim, S. & Martin, R. T. Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS Nomenclature Committees. Clays Clay Miner. 43, 255–256 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Eberl, D. D., Farmer, V. C. & Barrer, R. M. Clay mineral formation and transformation in rocks and soils. Phil. Trans. R. Soc. Lond. A 311, 241–257 (1984)

    Article  ADS  CAS  Google Scholar 

  3. Merriman, R. J. Clay minerals and sedimentary basin history. Eur. J. Mineral. 17, 7–20 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Kump, L. R., Brantley, S. L. & Arther, M. A. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133–161 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Poulet, F. et al. Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623–627 (2005)This paper details the mineralogy and geological settings of the first clays found on Mars and reports that clay minerals are restricted to Noachian terrains.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006)This paper advances the hypothesis that distinctive types of alteration minerals define three sequential environmental epochs in Mars’s history.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Mustard, J. F. et al. Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454, 305–309 (2008)This paper reports that clays on Mars are of diverse mineralogy and geological setting as well as more widespread than previously believed.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Rogers, D. & Christensen, P. R. Surface mineralogy of Martian low-albedo regions from MGS-TES data: implications for upper crustal evolution and surface alteration. J. Geophys. Res. 112, E01003 (2007)

    ADS  Google Scholar 

  10. Kraft, M. D., Michalski, J. R. & Sharp, T. G. Effects of pure silica coatings on thermal emission spectra of basaltic rocks: considerations for Martian surface mineralogy. Geophys. Res. Lett. 30, 2288 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Murchie, S. L. et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06 (2009)In this paper, nearly a dozen distinctive chemical environments are reported to be preserved in the rock record of ancient Mars, identified and time-ordered by combining geomorphic data with mineralogical data.

    Google Scholar 

  12. Chevrier, V., Poulet, F. & Bibring, J.-P. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 60–63 (2007)In this paper, on the basis of thermodynamic arguments a hypothesis is put forward that explains the transition from clay-forming conditions to sulphate-forming conditions in terms of loss of non-carbon-dioxide atmospheric greenhouse gases.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Andrews-Hanna, J. et al. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. 115, E06002 (2010)

    ADS  Google Scholar 

  14. Haberle, R. M. et al. On the possibility of liquid water on present-day Mars. J. Geophys. Res. 106, E10 (2001)

    Google Scholar 

  15. Tanaka, K. L. Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars. J. Geophys. Res. 102, 4131–4149 (1997)

    Article  ADS  Google Scholar 

  16. Fassett, C. I. & Head, J. W. The timing of Martian valley network activity: constraints from buffered crater counting. Icarus 195, 61–89 (2008)

    Article  ADS  Google Scholar 

  17. Haberle, R. Early Mars climate models. J. Geophys. Res. 103, E12 (1998)

    Google Scholar 

  18. Halevy, I. et al. A sulfur dioxide climate feedback on early Mars. Science 318, 1903–1907 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Phillips, R. et al. Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332, 838–841 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Squyres, S. W. & Kasting, J. F. Early Mars: how warm and how wet? Science 265, 744–749 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Fairén, A. G., Davila, A. F., Gag-Duport, L., Amils, R. & McKay, C. P. Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009)

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Meunier, A. Clays (Springer, 2005)

    Google Scholar 

  23. Frey, M. & Robinson, D. Low-Grade Metamorphism (Blackwell, 1999)

    Google Scholar 

  24. Spear, F. S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths (Mineralogical Society of America, 1993)

    Google Scholar 

  25. Griffith, L. L. & Shock, E. L. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations. J. Geophys. Res. 102, 9135–9143 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Franzson, H., Zierenberg, R. & Schiffman, P. Chemical transport in geothermal systems in Iceland: evidence from hydrothermal alteration. J. Volcanol. Geotherm. Res. 173, 217–229 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Cann, J. R. & Vine, F. J. An area on the crest of the Carlsberg Ridge: petrology and magnetic survey. Phil. Trans. R. Soc. Lond. A 259, 198–217 (1966)

    Article  ADS  Google Scholar 

  28. Ehlmann, B. L., Mustard, J. F. & Bish, D. L. in Analogue Sites for Mars Missions: MSL and Beyond abstr. 6020, 〈http://www.lpi.usra.edu/meetings/analogues2011/pdf/6020.pdf〉 (Lunar and Planetary Institute, 2011)

    Google Scholar 

  29. Nesbitt, H. W. & Wilson, R. E. Recent chemical weathering of basalts. Am. J. Sci. 292, 740–777 (1992)

    Article  ADS  CAS  Google Scholar 

  30. Gislason, S. R., Arnorsson, S. & Armannsson, H. Chemical weathering of basalt in southwest Iceland: effects of runoff, age of rocks, and vegetative/glacial cover. Am. J. Sci. 296, 837–907 (1996)

    Article  ADS  CAS  Google Scholar 

  31. Hurowitz, J. A. & McLennan, S. L. A 3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 260, 432–443 (2007)This paper uses a conceptual framework from the Earth science literature to understand element transport in different alteration scenarios and shows acidic, low-W/R alteration since the Hesperian.

    Article  ADS  CAS  Google Scholar 

  32. Milliken, R. E. et al. Missing salts on early Mars. Geophys. Res. Lett. 36, L11202 (2009)This paper models Noachian clay formation in open-system weathering and notes that abundant coeval salts should be produced but are not detected.

    Article  ADS  CAS  Google Scholar 

  33. Hurowitz, J. et al. Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nature Geosci. 3, 323–326 (2010)

    Article  ADS  CAS  Google Scholar 

  34. Harder, H. Nontronite synthesis at low temperatures. Chem. Geol. 18, 169–180 (1976)

    Article  ADS  CAS  Google Scholar 

  35. Tosca, N. J. et al. in Workshop on Martian Phyllosilicates: Recorders of Aqueous Processes? abstr. 7030, 〈http://www.ias.u-psud.fr/Mars_Phyllosilicates/phyllo/4.Wednesdayafternoon/6.Tosca_Phyllo_2008.ppt〉 (Institut d’Astrophysique Spatiale, 2008)

  36. Altheide, T. et al. Mineralogical characterization of acid weathered phyllosilicates with implications for secondary Martian deposits. Geochim. Cosmochim. Acta 74, 6232–6248 (2010)

    Article  ADS  CAS  Google Scholar 

  37. Carter, J., Poulet, F., Bibring, J.-P. & Murchie, S. Detection of hydrated silicates in crustal outcrops in the northern plains of Mars. Science 328, 1682–1686 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Baldridge, A. M. et al. Contemporaneous deposition of phyllosilicates and sulfates: using Australian acidic saline lake deposits to describe geochemical variability on Mars. Geophys. Res. Lett. 36, L19201 (2009)

    Article  ADS  Google Scholar 

  39. Buczkowski, D. L. et al. Investigation of an Argyre basin ring structure using Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars. J. Geophys. Res. 115, E12011 (2010)

    Article  ADS  Google Scholar 

  40. Buczkowski, D. et al. in 41st Lunar Planet. Sci. Conf. abstr. 1458, 〈http://www.lpi.usra.edu/meetings/lpsc2010/pdf/1458.pdf〉 (Lunar and Planetary Institute, 2010)

    Google Scholar 

  41. Ehlmann, B. L. et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, E00D08 (2009)This paper provides the first report of minerals in characteristic assemblages (diagenetic, low-grade metamorphic and hydrothermal) indicative of alteration at increased temperatures, ranging from above ambient to 400 °C.

    Google Scholar 

  42. Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010)

    Article  ADS  CAS  Google Scholar 

  43. Fraeman, A. A. et al. in 40th Lunar Planet. Sci. Conf. abstr. 2320, 〈http://www.lpi.usra.edu/meetings/lpsc2009/pdf/2320.pdf〉 (Lunar and Planetary Institute, 2009)

    Google Scholar 

  44. Glotch, T. D. et al. Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys. Res. Lett. 37, L16202 (2010)

    Article  ADS  CAS  Google Scholar 

  45. Michalski, J. R. & Niles, P. B. Deep crustal carbonate rocks exposed by meteor impact on Mars. Nature Geosci. 3, 751–755 (2010)

    Article  ADS  CAS  Google Scholar 

  46. McKeown, N. et al. Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J. Geophys. Res. 114, E00D10 (2009)

    Google Scholar 

  47. Milliken, R. E. et al. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010)

    Article  ADS  CAS  Google Scholar 

  48. Milliken, R. E. & Bish, D. L. Sources and sinks of clay minerals on Mars. Phil. Mag. 90, 2293–2308 (2010)

    Article  ADS  CAS  Google Scholar 

  49. Mustard, J. F. & Ehlmann, B. L. in 42nd Lunar Planet. Sci. Conf. abstr. 2355, 〈http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2355.pdf〉 (Lunar and Planetary Institute, 2011)

    Google Scholar 

  50. Noe Dobrea, E. Z. et al. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: constraints on geological origin. J. Geophys. Res. 115, E00D19 (2010)

    Google Scholar 

  51. Roach, L. H. et al. Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris. Icarus 206, 253–268 (2010)

    Article  ADS  CAS  Google Scholar 

  52. Wiseman, S. M. et al. Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophys. Res. Lett. 35, L19204 (2008)

    Article  ADS  CAS  Google Scholar 

  53. Wiseman, S. M. et al. Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars. J. Geophys. Res. 115, E00D18 (2010)

    Google Scholar 

  54. Wray, J. J. et al. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. 116, E01001 (2011)

    ADS  Google Scholar 

  55. Ehlmann, B. L., Mustard, J. F., Clark, R. N., Swayze, G. A. & Murchie, S. L. Evidence for low-grade metamorphism, hydrothermal alteration, and diagnosis on Mars from phyllosilicate mineral assemblages. Clays Clay Miner. 59, 357–375 (2011)

    Article  ADS  CAS  Google Scholar 

  56. Wray, J. J. et al. Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology 37, 1043–1046 (2009)

    Article  ADS  CAS  Google Scholar 

  57. Mustard, J. F. et al. Composition, morphology, and stratigraphy of Noachian crust around the Isidis basin. J. Geophys. Res. 114, E00D12 (2009)

    Google Scholar 

  58. Allen, C. C., Jercinovic, M. J., See, T. & Keil, K. Experimental shock lithification of water-bearing rock powders. Geophys. Res. Lett. 9, 1013–1016 (1982)

    Article  ADS  CAS  Google Scholar 

  59. Rathbun, J. A. & Squyres, S. W. Hydrothermal systems associated with Martian impact craters. Icarus 157, 362–372 (2002)

    Article  ADS  Google Scholar 

  60. Abramov, O. & Kring, D. A. Impact-induced hydrothermal activity on early Mars. J. Geophys. Res. 110, E12S09 (2005)

    Article  ADS  Google Scholar 

  61. Newsom, H. E. Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44, 207–216 (1980)

    Article  ADS  Google Scholar 

  62. Schwenzer, S. P. & Kring, D. A. Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars. Geology 37, 1091–1094 (2009)

    Article  ADS  CAS  Google Scholar 

  63. Fairen, A. G. et al. Noachian and more recent phyllosilicates in impact craters on Mars. Proc. Natl Acad. Sci. USA 107, 12,095–12,100 (2010)

    Article  Google Scholar 

  64. Marzo, G. A. et al. Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208, 667–683 (2010)

    Article  ADS  CAS  Google Scholar 

  65. Melosh, J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989)

    Google Scholar 

  66. Hughes, A. C. G. et al. in 42nd Lunar Planet. Sci. Conf. abstr. 2301, 〈http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2301.pdf〉 (Lunar and Planetary Institute, 2011)

    Google Scholar 

  67. Osterloo, M. M. et al. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010)

    Article  ADS  Google Scholar 

  68. Loizeau, D. Etude Spectrale et Geologique des Phyllosilicates de Mars 165–209. PhD thesis, Univ. Paris-Sud XI. (2008)

    Google Scholar 

  69. Michalski, J. et al. The Mawrth Vallis region of Mars: a potential landing site for the Mars Science Laboratory (MSL) mission. Astrobiology 10, 687–703 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Bishop, J. L. et al. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321, 830–833 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Irwin, R. P., III et al. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, E12S15 (2005)

    Article  ADS  CAS  Google Scholar 

  72. Howard, A. D., Moore, J. M. & Irwin, R. P. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14 (2005)

    Article  ADS  Google Scholar 

  73. Taylor, G. J. et al. Mapping Mars geochemically. Geology 38, 183–186 (2010)

    Article  ADS  CAS  Google Scholar 

  74. Poulet, F. et al. Abundance of minerals in the phyllosilicate-rich units on Mars. Astron. Astrophys. 487, L41–L44 (2008)

    Article  ADS  CAS  Google Scholar 

  75. Barnhart, C. J. et al. Long-term precipitation and late-stage valley network formation: landform simulations of Parana Basin, Mars. J. Geophys. Res. 114, E01003 (2009)

    ADS  Google Scholar 

  76. Meunier, A. et al. The Fe-rich clay microsystems in basalt-komatiite lavas: importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean eon. Orig. Life Evol. Biosph. 40, 253–272 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Clifford, S. M. A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. 98, 10,973–11,016 (1993)

    Article  ADS  CAS  Google Scholar 

  78. Abramov, O. & Mojzsis, S. J. Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459, 419–422 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Gulick, V. C. Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 103, 19365–19387 (1998)

    Article  ADS  CAS  Google Scholar 

  80. Harrison, K. P. & Grimm, R. E. Controls on Martian hydrothermal systems: application to valley network and magnetic anomaly formation. J. Geophys. Res. 107, 5025 (2002)

    Article  Google Scholar 

  81. Parmentier, E. M. & Zuber, M. T. Early evolution of Mars with mantle compositional stratification or hydrothermal crustal cooling. J. Geophys. Res. 112, E02007 (2007)

    ADS  Google Scholar 

  82. Carr, M. H. Stability of streams and lakes on Mars. Icarus 56, 476–495 (1983)

    Article  ADS  Google Scholar 

  83. Tosca, N. J. & Knoll, A. H. Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 286, 379–386 (2009)This paper points out an apparent paradox: if water was readily available and long-lived on Mars, diagenesis/burial metamorphism should have transformed smectites to higher-temperature phases.

    Article  ADS  CAS  Google Scholar 

  84. Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Segura, T. L. et al. Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Phillips, R. J. et al. Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Johnson, S. S. et al. Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. 113, E08005 (2008)

    ADS  Google Scholar 

  88. Wray, J. J. et al. Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars. Geophys. Res. Lett. 36, L21201 (2009)

    Article  ADS  CAS  Google Scholar 

  89. Grant, J. A. et al. The science process for selecting the landing site for the 2011 Mars Science Laboratory. Planet. Space Sci. 59, 1114–1127 (2011)

    Article  ADS  Google Scholar 

  90. Bridges, J. C. et al. Alteration assemblages in Martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365–392 (2001)

    Article  ADS  CAS  Google Scholar 

  91. Wray, J. J. et al. in 42nd Lunar Planet. Sci. Conf. abstr. 2635, 〈http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2635.pdf〉 (Lunar and Planetary Institute, 2011)

    Google Scholar 

  92. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997)

    Article  CAS  PubMed  Google Scholar 

  94. Reysenbach, A.-L. & Shock, E. Merging genomes with geochemistry in hydrothermal systems. Science 296, 1077–1082 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Acuña, M. H. et al. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999)

    Article  ADS  PubMed  Google Scholar 

  96. Frey, H. Ages of very large impact basins on Mars: implications for the late heavy bombardment in the inner solar system. Geophys. Res. Lett. 35, L13203 (2008)

    Article  ADS  CAS  Google Scholar 

  97. Werner, S. C. The early Martian evolution—constraints from basin formation ages. Icarus 195, 45–60 (2008)

    Article  ADS  Google Scholar 

  98. Werner, S. C. The global Martian volcanic evolutionary history. Icarus 201, 44–68 (2009)

    Article  ADS  Google Scholar 

  99. Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks to J. Catalano and C. Fassett for detailed feedback on earlier versions of this work; to R. Arvidson, J. Carter, J. Michalski, F. Poulet and M. Vincendon for science discussions; and to the Mars Express and Mars Reconnaissance Orbiter teams for their data collection efforts.

Author information

Authors and Affiliations

Authors

Contributions

B.L.E. compiled the data sets and led formulation of the manuscript text and figures and the concepts therein. J.F.M. contributed to the text and to the development of hypotheses and scenarios early in manuscript development. S.L.M. contributed to the text and figures and was instrumental in leading data set collection. J.-P.B. and A.M. contributed to formulation of key ideas in the manuscript regarding timing of clay formation relative to other events in Martian history (J.-P.B.) and methods used for assessing clay formation environment (A.M.). A.A.F and Y.L. helped with text formulation and structure, and A.A.F. provided her database with analyses of hundreds of CRISM images for incorporation.

Corresponding author

Correspondence to Bethany L. Ehlmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlmann, B., Mustard, J., Murchie, S. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011). https://doi.org/10.1038/nature10582

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10582

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing