Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry

Abstract

Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes1. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for ‘pin’ and ‘thrum’ floral types in Primula1 and Fagopyrum2, but classic examples are also found in insect mimicry3,4,5 and snail morphology6. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge7,8,9,10. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species9,10,11, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the P locus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supergene alleles and mimicry polymorphism in H. numata.
Figure 2: Fine-scale mapping and nucleotide variation at the P supergene in H. numata.
Figure 3: Chromosomal rearrangements associated with the supergene in natural populations.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

GenBank accessions for BAC clone sequences: FP885863, FP476061, FP565803, FP476023, CU856181, FP885878, FP476047, FP885857, CU856182, CU655868, FP885879, FP885861, FP885880, FP885855, CU914733, FP475989, CU655869, CU914734, CU633161, CU638865, CU856175, FP884220 and FP236755. Accessions for 1364 marker sequences: JN173798–JN175161.

References

  1. Mather, K. The genetical architecture of heterostyly in Primula sinensis. Evolution 4, 340–352 (1950)

    Article  Google Scholar 

  2. Garber, R. J. & Quisenberry, K. S. The inheritance of length of style in buckwheat. J. Agric. Res. 34, 181–183 (1927)

    Google Scholar 

  3. Clarke, C. A., Sheppard, P. M. & Thornton, I. W. B. The genetics of the mimetic butterfly Papilio memnon. Philos. Trans. R. Soc. Lond. B 254, 37–89 (1968)

    Article  ADS  Google Scholar 

  4. Brown, K. S. & Benson, W. W. Adaptive polymorphism associated with multiple Müllerian mimicry in Heliconius numata. Biotropica 6, 205–228 (1974)

    Article  Google Scholar 

  5. Nijhout, H. F. Polymorphic mimicry in Papilio dardanus: mosaic dominance, big effects, and origins. Evol. Dev. 5, 579–592 (2003)

    Article  PubMed  Google Scholar 

  6. Murray, J. & Clarke, B. Supergenes in polymorphic land snails—examples from genus Partula. Genetics 74, S188–S189 (1973)

    Google Scholar 

  7. Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Manfield, I. W. et al. Molecular characterization of DNA sequences from the Primula vulgaris S-locus. J. Exp. Bot. 56, 1177–1188 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Joron, M. et al. A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biol. 4, e303 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baxter, S. W. et al. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genet. 6, e1000794 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ferguson, L. et al. Characterization of a hotspot for mimicry: Assembly of a butterfly wing transcriptome to genomic sequence at the HmYb/Sb locus. Mol. Ecol. 19, 240–254 (2010)

    Article  PubMed  Google Scholar 

  12. Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 39, 21–42 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pinho, C. & Hey, J. Divergence with gene flow: Models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010)

    Article  Google Scholar 

  14. Clark, R. et al. Colour pattern specification in the Mocker swallowtail Papilio dardanus: the transcription factor invected is a candidate for the mimicry locus H. Proc. R. Soc. B 275, 1181–1188 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Joron, M., Wynne, I. R., Lamas, G. & Mallet, J. Variable selection and the coexistence of multiple mimetic forms of the butterfly Heliconius numata. Evol. Ecol. 13, 721–754 (1999)

    Article  Google Scholar 

  16. Turner, J. R. G. in The biology of butterflies Vol. 11 (eds Vane-Wright, R. I. & Ackery, P. R. ) 141–161 (Academic, 1984)

    Google Scholar 

  17. Charlesworth, D. & Charlesworth, B. Theoretical genetics of Batesian mimicry. II. Evolution of supergenes. J. Theor. Biol. 55, 305–324 (1975)

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez, G. & Zapata, C. Conditions for protected inversion polymorphism under supergene selection. Genetics 146, 717–722 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hatadani, L. M., Baptista, J. C. R., Souza, W. N. & Klaczko, L. B. Colour polymorphism in Drosophila mediopunctata: genetic (chromosomal) analysis and nonrandom association with chromosome inversions. Heredity 93, 525–534 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Lowry, D. B. & Willis, J. H. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 8, e1000500 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jones, R. T., Salazar, P., ffrench-Constant, R. H., Jiggins, C. D. & Joron, M. Evolution of a mimicry supergene from a multilocus architecture. Proc. R. Soc. B 10.1098/rspb.2011.0882 (2011)

  22. Papa, R. et al. Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies. BMC Genomics 9, 345 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pringle, E. G. et al. Synteny and chromosome evolution in the lepidoptera: Evidence from mapping in Heliconius melpomene. Genetics 177, 417–426 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Counterman, B. A. et al. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet. 6, e1000796 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dobzhansky, T. Genetics of natural populations. XIV. A response of certain gene arrangements in the third chromosome of Drosophila pseudoobscura to natural selection. Genetics 32, 142–160 (1947)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Saenko, S. V., Brakefield, P. M. & Beldade, P. Single locus affects embryonic segment polarity and multiple aspects of an adult evolutionary novelty. BMC Biol. 8, 111 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  27. van't Hof, A. E., Edmonds, N., Dalíková, M., Marec, F. & Saccheri, I. J. Industrial melanism in British peppered moths has a singular and recent mutational origin. Science 332, 958–960 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kronforst, M. R. et al. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc. Natl Acad. Sci. USA 103, 6575–6580 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E. & Kronforst, M. R. Polymorphic butterfly reveals the missing link in ecological speciation. Science 326, 847–850 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Merrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B 278, 511–518 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mayor, C. et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16, 1046 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chevreux, B. et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14, 1147–1159 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salazar, C., Jiggins, C. D., Taylor, J. E., Kronforst, M. R. & Linares, M. Gene flow and the genealogical history of Heliconius heurippa. BMC Evol. Biol. 8, 132 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brown, K. S. An illustrated key to the silvaniform Heliconius (Lepidoptera: Nymphalidae) with descriptions of new subspecies. Trans. Am. Entomol. Soc. 102, 373–484 (1976)

    Google Scholar 

  37. Zaykin, D. V., Pudovkin, A. & Weir, B. S. Correlation-based inference for linkage disequilibrium with multiple alleles. Genetics 180, 533–545 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stephens, M. & Donnelly, P. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Polzin, T. & Daneshmand, S. V. On Steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett. 31, 12–20 (2003)

    Article  MathSciNet  Google Scholar 

  40. Forster, P., Torroni, A., Renfrew, C. & Rohl, A. Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. Mol. Biol. Evol. 18, 1864–1881 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from DNA-sequence data. Genetics 132, 583–589 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Blaxter and D. Charlesworth for advice throughout the study; The GenePool and S. Humphray for DNA sequencing; S. Kumar and A. Papanicolaou for bioinformatics support; M. Beltrán, A. Bulski, M. Veuille and the Botanique-Entomologie-Mycologie molecular facility (BoEM) for laboratory support; S. Johnston for genome-size estimates in H. numata; D. Obbard for providing R scripts; M. Abanto, S. Gallusser, C. Ramírez, L. de Silva, J. Barbut, B. Gilles and G. Lamas for help with butterfly rearing, fieldwork and collecting permits; and the Peruvian National Institute of Natural Resources (INRENA) for granting collecting and export permits (076-2007-INRENA-IFFS-DCB). Fieldwork in French Guiana was supported by a CNRS ‘Nouragues Research Grant’. This work was supported by an EMBO long-term fellowship (ALTF-431-2004), EMBO-matching funds from NWO (Netherlands), a Royal Society University Research Fellowship (516002.K5917/ROG), a CNRS grant (ATIP Biodiversité 2008, France) and a European Research Council Starting Grant (ERC-Stg ‘MimEvol’) to M.J., a BBSRC grant (BBE0118451) to C.D.J. and R.H.ff.-C., a Leverhulme Trust grant (F/00144AY) to R.H.ff.-C., and a Royal Society University Research Fellowship and a Leverhulme Research Leadership grant to C.D.J.

Author information

Authors and Affiliations

Authors

Contributions

M.J., C.D.J. and R.H.ff.-C. designed the study and contributed to all stages of the project. M.J., L. Frezal and R.T.J. performed the principal experiments and data analysis, with assistance from N.L.C., S.W.B., S.F.L., M.B., C.S., L. Ferguson, C.R.H., A.W. and P.A.W. BAC clone sequencing was carried out by C.D., R.G., C.L., R.C., H.B., S.S., J.R., M.C.J. and M.A.Q. M.J., A.W., C.D.J. and R.H.ff.-C. co-wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Mathieu Joron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-6 with legends, Supplementary Tables 1-9 and additional references. (PDF 2716 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joron, M., Frezal, L., Jones, R. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011). https://doi.org/10.1038/nature10341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10341

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing