Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Latent TGF-β structure and activation

Abstract

Transforming growth factor (TGF)-β is stored in the extracellular matrix as a latent complex with its prodomain. Activation of TGF-β1 requires the binding of αv integrin to an RGD sequence in the prodomain and exertion of force on this domain, which is held in the extracellular matrix by latent TGF-β binding proteins. Crystals of dimeric porcine proTGF-β1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields the growth factor from recognition by receptors and alters its conformation. Complex formation between αvβ6 integrin and the prodomain is insufficient for TGF-β1 release. Force-dependent activation requires unfastening of a ‘straitjacket’ that encircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-β family members indicate a similar prodomain fold. The structure provides insights into the regulation of a family of growth and differentiation factors of fundamental importance in morphogenesis and homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of proTGF-β1.
Figure 2: The TGF-β family.
Figure 3: Shielding from receptor binding.
Figure 4: ProTGF-β1 complexes with LTBP and α v β 6 integrin, and activation of TGF-β.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

X-ray structures have been deposited in the Protein Data Bank under the accession number 3RJR.

References

  1. Wu, M. Y. & Hill, C. S. TGF-β superfamily signaling in embryonic development and homeostasis. Dev. Cell 16, 329–343 (2009)

    Article  CAS  Google Scholar 

  2. Derynck, R. & Miyazono, K. in The TGF-β Family (eds Derynck, R. & Miyazono, K. ) Ch. 2, 29–43 (Cold Spring Harbor Laboratory Press, 2008)

    Google Scholar 

  3. Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000)

    Article  CAS  Google Scholar 

  4. Gray, A. M. & Mason, A. J. Requirement for activin A and transforming growth factor-β 1 pro-regions in homodimer assembly. Science 247, 1328–1330 (1990)

    Article  ADS  CAS  Google Scholar 

  5. Annes, J. P., Chen, Y., Munger, J. S. & Rifkin, D. B. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J. Cell Biol. 165, 723–734 (2004)

    Article  CAS  Google Scholar 

  6. Ramirez, F. & Sakai, L. Y. Biogenesis and function of fibrillin assemblies. Cell Tissue Res. 339, 71–82 (2010)

    Article  CAS  Google Scholar 

  7. Yang, Z. et al. Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice. J. Cell Biol. 176, 787–793 (2007)

    Article  CAS  Google Scholar 

  8. Wipff, P. J. & Hinz, B. Integrins and the activation of latent transforming growth factor β1 — an intimate relationship. Eur. J. Cell Biol. 87, 601–615 (2008)

    Article  CAS  Google Scholar 

  9. Aluwihare, P. et al. Mice that lack activity of αVβ6- and αVβ8-integrins reproduce the abnormalities of Tgfβ1- and Tgfβ3-null mice. J. Cell Sci. 122, 227–232 (2009)

    Article  CAS  Google Scholar 

  10. Munger, J. S. et al. The integrin αVβ6 binds and activates latent TGF β1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999)

    Article  CAS  Google Scholar 

  11. Yoshinaga, K. et al. Perturbation of transforming growth factor (TGF)-β1 association with latent TGF-β binding protein yields inflammation and tumors. Proc. Natl Acad. Sci. USA 105, 18758–18763 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008)

    Article  CAS  Google Scholar 

  13. Daopin, S., Piez, K. A., Ogawa, Y. & Davies, D. R. Crystal structure of transforming growth factor-β2: an unusual fold for the superfamily. Science 257, 369–373 (1992)

    Article  ADS  CAS  Google Scholar 

  14. Schlunegger, M. P. & Grutter, M. G. An unusual feature revealed by the crystal structure at 2.2 Å resolution of human transforming growth factor-β2. Nature 358, 430–434 (1992)

    Article  ADS  CAS  Google Scholar 

  15. Radaev, S. et al. Ternary complex of transforming growth factor-β1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. J. Biol. Chem. 285, 14806–14814 (2010)

    Article  CAS  Google Scholar 

  16. Gentry, L. E. & Nash, B. W. The pro domain of pre-pro-transforming growth factor β1 when independently expressed is a functional binding protein for the mature growth factor. Biochemistry 29, 6851–6857 (1990)

    Article  CAS  Google Scholar 

  17. Belville, C. et al. Mutations of the anti-Müllerian hormone gene in patients with persistent Müllerian duct syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a three-dimensional model. Mol. Endocrinol. 18, 708–721 (2004)

    Article  CAS  Google Scholar 

  18. Walton, K. L. et al. Two distinct regions of latency-associated peptide coordinate stability of the latent transforming growth factor-β1 complex. J. Biol. Chem. 285, 17029–17037 (2010)

    Article  CAS  Google Scholar 

  19. Little, S. C. & Mullins, M. C. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nature Cell Biol. 11, 637–643 (2009)

    Article  CAS  Google Scholar 

  20. Lack, J. et al. Solution structure of the third TB domain from LTBP1 provides insight into assembly of the large latent complex that sequesters latent TGF-β. J. Mol. Biol. 334, 281–291 (2003)

    Article  CAS  Google Scholar 

  21. Chen, Y. et al. Amino acid requirements for formation of the TGF-β-latent TGF-β binding protein complexes. J. Mol. Biol. 345, 175–186 (2005)

    Article  CAS  Google Scholar 

  22. Luo, B.-H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007)

    Article  CAS  Google Scholar 

  23. Forman, J. R. & Clarke, J. Mechanical unfolding of proteins: insights into biology, structure and folding. Curr. Opin. Struct. Biol. 17, 58–66 (2007)

    Article  CAS  Google Scholar 

  24. Janssens, K. et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J. Med. Genet. 43, 1–11 (2005)

    Article  Google Scholar 

  25. Walton, K. L. et al. A common biosynthetic pathway governs the dimerization and secretion of inhibin and related transforming growth factor β (TGFβ) ligands. J. Biol. Chem. 284, 9311–9320 (2009)

    Article  CAS  Google Scholar 

  26. Anderson, S. B., Goldberg, A. L. & Whitman, M. Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J. Biol. Chem. 283, 7027–7035 (2008)

    Article  CAS  Google Scholar 

  27. Sengle, G. et al. Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J. Biol. Chem. 283, 13874–13888 (2008)

    Article  CAS  Google Scholar 

  28. Cui, Y. et al. The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes Dev. 15, 2797–2802 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Blanchet, M. H. et al. Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation. EMBO J. 27, 2580–2591 (2008)

    Article  CAS  Google Scholar 

  30. Wilson, C. A. et al. Müllerian inhibiting substance requires its N-terminal domain for maintenance of biological activity, a novel finding within the transforming growth factor-β superfamily. Mol. Endocrinol. 7, 247–257 (1993)

    CAS  PubMed  Google Scholar 

  31. Ulloa, L. et al. Lefty proteins exhibit unique processing and activate the MAPK pathway. J. Biol. Chem. 276, 21387–21396 (2001)

    Article  CAS  Google Scholar 

  32. Keefe, A. D., Wilson, D. S., Seelig, B. & Szostak, J. W. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr. Purif. 23, 440–446 (2001)

    Article  CAS  Google Scholar 

  33. Zou, Z. & Sun, P. D. Overexpression of human transforming growth factor-β1 using a recombinant CHO cell expression system. Protein Expr. Purif. 37, 265–272 (2004)

    Article  CAS  Google Scholar 

  34. Gentry, L. E. et al. Type 1 transforming growth factor beta: amplified expression and secretion of mature and precursor polypeptides in Chinese hamster ovary cells. Mol. Cell. Biol. 7, 3418–3427 (1987)

    Article  CAS  Google Scholar 

  35. Brunner, A. M. et al. Site-directed mutagenesis of glycosylation sites in the transforming growth factor-beta 1 (TGF beta 1) and TGF beta 2 (414) precursors and of cysteine residues within mature TGF beta 1: effects on secretion and bioactivity. Mol. Endocrinol. 6, 1691–1700 (1992)

    CAS  PubMed  Google Scholar 

  36. Heras, B. & Martin, J. L. Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr. D 61, 1173–1180 (2005)

    Article  Google Scholar 

  37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  38. Kabsch, W. in International Tables for Crystallography, Vol. F: Crystallography of Biological Macromolecules (eds Rossmann, M. G. & Arnold, E. V. ) Ch. 25.2.9 XDS, 730–734 (Springer, 2001)

    Google Scholar 

  39. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  40. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D 66, 22–25 (2010)

    Article  CAS  Google Scholar 

  41. Bailey, S. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  42. Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D 66, 470–478 (2010)

    Article  CAS  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  44. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    Article  ADS  Google Scholar 

  45. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002)

    Article  CAS  Google Scholar 

  46. Chen, X. et al. Requirement of open headpiece conformation for activation of leukocyte integrin αXβ2 . Proc. Natl Acad. Sci. USA 107, 14727–14732 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Sun for porcine TGF-β1 cDNA, K. Koli for human TGF-β1 and LTBP1 cDNAs, D. Rifkin for human LTBP1 cDNA and transformed mink lung epithelial cells, and the staff of the Advanced Photon Source General Medical Sciences and National Cancer Institute (APS GM/CA-CAT) beamline 23-ID.

Author information

Authors and Affiliations

Authors

Contributions

M.S. cloned, expressed and purified proTGF-β1, crystallized the protein, collected and processed X-ray data, refined and analysed the structure, designed and performed biochemical assays and wrote the paper. J.Z. collected and processed X-ray data, refined and analysed the structure and performed electron microscopy studies. R.W. designed and performed TGF-β1 assays. X.C. performed electron microscopy studies. L.M. processed X-ray data. T.W. provided electron microscopy supervision. T.A.S. designed and supervised the project, refined and analysed the structure and wrote the paper.

Corresponding author

Correspondence to Timothy A. Springer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-5 with legends and Supplementary Table 1. (PDF 7314 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Zhu, J., Wang, R. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011). https://doi.org/10.1038/nature10152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10152

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing