Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wiring specificity in the direction-selectivity circuit of the retina

Abstract

The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded the acquisition of high-resolution data on a large enough scale. Here we show, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglion cell’s preferred direction. Our findings indicate that a structural (wiring) asymmetry contributes to the computation of direction selectivity. The nature of this asymmetry supports some models of direction selectivity and rules out others. It also puts constraints on the developmental mechanisms behind the formation of synaptic connections. Our study demonstrates how otherwise intractable neurobiological questions can be addressed by combining functional imaging with the analysis of neuronal connectivity using large-scale electron microscopy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional characterization of DSGCs and their localization within the SBEM volume.
Figure 2: Skeleton reconstructions of DSGCs and SACs.
Figure 3: Contact geometries.
Figure 4: Specificity of SAC outputs.
Figure 5: Specificity of DSGC inputs.
Figure 6: Dendrite-angle distribution.

Similar content being viewed by others

References

  1. Barlow, H. B., Hill, R. M. & Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964)

    Article  CAS  Google Scholar 

  2. Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol. (Lond.) 178, 477–504 (1965)

    Article  CAS  Google Scholar 

  3. Taylor, W. R. & Vaney, D. I. Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. J. Neurosci. 22, 7712–7720 (2002)

    Article  CAS  Google Scholar 

  4. Fried, S. I., Munch, T. A. & Werblin, F. S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Famiglietti, E. V. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J. Comp. Neurol. 309, 40–70 (1991)

    Article  CAS  Google Scholar 

  6. Tauchi, M. & Masland, R. H. The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc. R. Soc. Lond. B 223, 101–119 (1984)

    Article  ADS  CAS  Google Scholar 

  7. Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780 (2001)

    Article  CAS  Google Scholar 

  8. O’Malley, D. M., Sandell, J. H. & Masland, R. H. Co-release of acetylcholine and GABA by the starburst amacrine cells. J. Neurosci. 12, 1394–1408 (1992)

    Article  Google Scholar 

  9. Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Chiao, C. C. & Masland, R. H. Starburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells. J. Neurosci. 22, 10509–10513 (2002)

    Article  CAS  Google Scholar 

  11. Grzywacz, N. M., Tootle, J. S. & Amthor, F. R. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit’s retinal directional selectivity? Vis. Neurosci. 14, 39–54 (1997)

    Article  CAS  Google Scholar 

  12. Taylor, W. R. & Vaney, D. I. New directions in retinal research. Trends Neurosci. 26, 379–385 (2003)

    Article  CAS  Google Scholar 

  13. Demb, J. B. Cellular mechanisms for direction selectivity in the retina. Neuron 55, 179–186 (2007)

    Article  CAS  Google Scholar 

  14. Schachter, M. J. et al. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLOS Comput. Biol. 6, (2010)

  15. Borg-Graham, L. J. The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nature Neurosci. 4, 176–183 (2001)

    Article  CAS  Google Scholar 

  16. Wei, W., Hamby, A. M., Zhou, K. & Feller, M. B. Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469, 402–406 (2010)

    Article  ADS  Google Scholar 

  17. Lee, S., Kim, K. & Zhou, Z. J. Role of ACh-GABA co-transmission in detecting image motion and motion direction. Neuron 68, 1159–1172 (2010)

    Article  CAS  Google Scholar 

  18. Yonehara, K. et al. Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469, 407–410 (2010)

    Article  ADS  Google Scholar 

  19. Mumm, J. S. et al. Laminar circuit formation in the vertebrate retina. Prog. Brain Res. 147, 155–169 (2005)

    Article  Google Scholar 

  20. Famiglietti, E. V. A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells. Vis. Neurosci. 19, 145–162 (2002)

    Article  CAS  Google Scholar 

  21. Dong, W. et al. Dendritic relationship between starburst amacrine cells and direction-selective ganglion cells in the rabbit retina. J. Physiol. (Lond.) 556, 11–17 (2004)

    Article  CAS  Google Scholar 

  22. Chen, Y. C. & Chiao, C. C. Symmetric synaptic patterns between starburst amacrine cells and direction selective ganglion cells in the rabbit retina. J. Comp. Neurol. 508, 175–183 (2008)

    Article  Google Scholar 

  23. Dacheux, R. F., Chimento, M. F. & Amthor, F. R. Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina. J. Comp. Neurol. 456, 267–278 (2003)

    Article  CAS  Google Scholar 

  24. White, J. G. et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. 314, 1–340 (1986)

    Article  CAS  Google Scholar 

  25. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004)

    Article  Google Scholar 

  26. Oyster, C. W., Amthor, F. R. & Takahashi, E. S. Dendritic architecture of ON-OFF direction-selective ganglion cells in the rabbit retina. Vision Res. 33, 579–608 (1993)

    Article  CAS  Google Scholar 

  27. Yang, G. & Masland, R. H. Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J. Neurosci. 14, 5267–5280 (1994)

    Article  CAS  Google Scholar 

  28. Denk, W. & Detwiler, P. B. Optical recording of light-evoked calcium signals in the functionally intact retina. Proc. Natl Acad. Sci. USA 96, 7035–7040 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Blankenship, A. G. et al. Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 62, 230–241 (2009)

    Article  CAS  Google Scholar 

  30. Stosiek, C. et al. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    Article  ADS  CAS  Google Scholar 

  31. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  ADS  CAS  Google Scholar 

  32. Euler, T. et al. Eyecup scope–optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch. 457, 1393–1414 (2009)

    Article  CAS  Google Scholar 

  33. Oyster, C. W. & Barlow, H. B. Direction-selective units in rabbit retina: distribution of preferred directions. Science 155, 841–842 (1967)

    Article  ADS  CAS  Google Scholar 

  34. Yamada, E. S. et al. Synaptic connections of starburst amacrine cells and localization of acetylcholine receptors in primate retinas. J. Comp. Neurol. 461, 76–90 (2003)

    Article  CAS  Google Scholar 

  35. Keeley, P. W. et al. Dendritic spread and functional coverage of starburst amacrine cells. J. Comp. Neurol. 505, 539–546 (2007)

    Article  Google Scholar 

  36. Hausselt, S. E. et al. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol. 5, e185 (2007)

    Article  Google Scholar 

  37. Lee, S. & Zhou, Z. J. The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51, 787–799 (2006)

    Article  CAS  Google Scholar 

  38. Oesch, N. W. & Taylor, W. R. Tetrodotoxin-resistant sodium channels contribute to directional responses in starburst amacrine cells. PLoS ONE 5, e12447 (2010)

    Article  ADS  Google Scholar 

  39. He, S., Jin, Z. F. & Masland, R. H. The nondiscriminating zone of directionally selective retinal ganglion cells: comparison with dendritic structure and implications for mechanism. J. Neurosci. 19, 8049–8056 (1999)

    Article  CAS  Google Scholar 

  40. Kittila, C. A. & Massey, S. C. Effect of ON pathway blockade on directional selectivity in the rabbit retina. J. Neurophysiol. 73, 703–712 (1995)

    Article  CAS  Google Scholar 

  41. Caldwell, J. H., Daw, N. W. & Wyatt, H. J. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J. Physiol. (Lond.) 276, 277–298 (1978)

    Article  CAS  Google Scholar 

  42. Vaney, D. I. & Young, H. M. GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Res. 438, 369–373 (1988)

    Article  CAS  Google Scholar 

  43. Fried, S. I., Munch, T. A. & Werblin, F. S. Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina. Neuron 46, 117–127 (2005)

    Article  CAS  Google Scholar 

  44. Dmitrieva, N. A. et al. Identification of cholinoceptive glycinergic neurons in the mammalian retina. J. Comp. Neurol. 456, 167–175 (2003)

    Article  Google Scholar 

  45. Dmitrieva, N. A., Strang, C. E. & Keyser, K. T. Expression of α7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. J. Histochem. Cytochem. 55, 461–476 (2007)

    Article  CAS  Google Scholar 

  46. Wickersham, I. R. et al. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007)

    Article  CAS  Google Scholar 

  47. Granstedt, A. E. et al. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus. PLoS ONE 4, e6923 (2009)

    Article  ADS  Google Scholar 

  48. Briggman, K. L. & Euler, T. Bulk electroporation and population calcium imaging in the adult mammalian retina. J. Neurophysiol (in the press)

  49. Schlichtenbrede, F. C. et al. Toxicity assessment of intravitreal triamcinolone and bevacizumab in a retinal explant mouse model using two-photon microscopy. Invest. Ophthalmol. Vis. Sci. 50, 5880–5887 (2009)

    Article  Google Scholar 

  50. Fahmy, A. An Extemporaneous Lead Citrate Stain for Electron Microscopy 148–149 (Proc. 25th Annu. EMSA Meeting, 1967)

    Google Scholar 

  51. Glauert, A. M. & Lewis, P. R. Biological specimen preparation for transmission electron microscopy. In Practical Methods in Electron Microscopy xxi (Princeton Univ. Press, 1998)

    Google Scholar 

  52. Karnovsky, M. J. Use of Ferrocyanide-reduced osmium in electron microscopy 146 (Proc. 14th Annual Meeting Am. Soc. Cell Biol., 1971)

    Google Scholar 

  53. Seligman, A. M., Wasserkrug, H. L. & Hanker, J. S. A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J. Cell Biol. 30, 424–432 (1966)

    Article  CAS  Google Scholar 

  54. Walton, J. Lead asparate, an en bloc contrast stain particularly useful for ultrastructural enzymology. J. Histochem. Cytochem. 27, 1337–1342 (1979)

    Article  CAS  Google Scholar 

  55. Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Euler for many useful discussions and help with the functional imaging experiments. We also thank H. Horstmann and S. Mikula for help with staining procedures; J. Kornfeld and F. Svara for programming KNOSSOS; J. Tritthardt for developing electronic circuits and M. Müller for help with the acquisition software; J. Hanne, H. Jakobi and H. Wissler for help with training tracers; M. Feller and Z. J. Zhou for discussion of their results; and J. Bollmann, A. Karpova and S. Seung for comments on the manuscript. We thank N. Abazova, E. Abs, A. Antunes, P. Bastians, M. Beining, J. Buhmann, F. Drawitsch, L. Ehm, F. Isensee, H. Jakobi, S. Kaspar, A. Khan, M. Kiapes, A. Klein, S. Laiouar, E. Möller, J. Trendel, P. Weber, K. Weiß, E. Wiegand and H. Wissler for the tracing work.

Author information

Authors and Affiliations

Authors

Contributions

K.L.B. and W.D. designed the study; W.D. designed the microtome; K.L.B. performed the calcium imaging and SBEM experiments, K.L.B. and M.H. analysed data; K.L.B., M.H. and W.D. wrote the paper.

Corresponding author

Correspondence to Kevin L. Briggman.

Ethics declarations

Competing interests

W.D. receives license income for SBEM technology.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-7 with legends. (PDF 3959 kb)

Supplementary Image Stacks

This zip file contains five small image stacks viewable in ImageJ corresponding to the examples in Figure 3. The centre of the stacks (64,64,64) coincides with the dendritic contact or proximity between a SAC and DSGC. Slice 64 in each stack contains colour-coded dots corresponding to the cell identities in Figure 3. (ZIP 11568 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggman, K., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011). https://doi.org/10.1038/nature09818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09818

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing