Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule analysis of Mss116-mediated group II intron folding

Abstract

DEAD-box helicases are conserved enzymes involved in nearly all aspects of RNA metabolism, but their mechanisms of action remain unclear. Here, we investigated the mechanism of the DEAD-box protein Mss116 on its natural substrate, the group II intron ai5γ. Group II introns are structurally complex catalytic RNAs considered evolutionarily related to the eukaryotic spliceosome, and an interesting paradigm for large RNA folding. We used single-molecule fluorescence to monitor the effect of Mss116 on folding dynamics of a minimal active construct, ai5γ−D135. The data show that Mss116 stimulates dynamic sampling between states along the folding pathway, an effect previously observed only with high Mg2+ concentrations. Furthermore, the data indicate that Mss116 promotes folding through discrete ATP-independent and ATP-dependent steps. We propose that Mss116 stimulates group II intron folding through a multi-step process that involves electrostatic stabilization of early intermediates and ATP hydrolysis during the final stages of native state assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule fluorescence detection of group II intron folding with its natural cofactor Mss116.
Figure 2: Effect of ionic strength on the folding dynamics of D135-L14 ribozyme.
Figure 3: Mss116 promotes folding of group II introns at near-physiological conditions.
Figure 4: Role of ATP in Mss116-mediated folding of group II introns.
Figure 5: Mss116-mediated group II intron folding.

Similar content being viewed by others

References

  1. Linder, P. Quick guide: DEAD-box proteins. Curr. Biol. 10, R887 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Diges, C. M. & Uhlenbeck, O. C. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J. 20, 5503–5512 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang, H. R. et al. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc. Natl Acad. Sci. USA 102, 163–168 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Solem, A., Zingler, N. & Pyle, A. M. A. DEAD protein that activates intron self-splicing without unwinding RNA. Mol. Cell 24, 611–617 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Halls, C. et al. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. J. Mol. Biol. 365, 835–855 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Del Campo, M. et al. Do DEAD-box proteins promote group II intron splicing without unwinding RNA? Mol. Cell 28, 159–166 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Lehmann, K. & Schmidt, U. Group II introns: structure and catalytic versatility of large natural ribozymes. Crit. Rev. Biochem. Mol. Biol. 38, 249–303 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Lambowitz, A. M. & Zimmerly, S. Mobile group II introns. Annu. Rev. Genet. 38, 1–35 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Toor, N., Hausner, G. & Zimmerly, S. Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7, 1142–1152 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qin, P. Z. & Pyle, A. M. The architectural organization and mechanistic function of group II intron structural elements. Curr. Opin. Struct. Biol. 8, 301–308 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Pyle, A. M. & Lambowitz, A. M. in The RNA World 3rd ed., Vol. 43 (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) Chap. 17 469–505 (Cold Spring Harbor Laboratory Press, 2006)

    Google Scholar 

  13. Koch, J. L., Boulanger, S. C., Dib-Hajj, S. D., Hebbar, S. K. & Perlman, P. S. Group II introns deleted for multiple substructures retain self-splicing activity. Mol. Cell. Biol. 12, 1950–1958 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michels, W. J., Jr & Pyle, A. M. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships. Biochemistry 34, 2965–2977 (1995)

    Article  CAS  PubMed  Google Scholar 

  15. Qin, P. Z. & Pyle, A. M. Stopped-flow fluorescence spectroscopy of a group II intron ribozyme reveals that domain 1 is an independent folding unit with a requirement for specific Mg2+ ions in the tertiary structure. Biochemistry 36, 4718–4730 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Su, L. J., Waldsich, C. & Pyle, A. M. An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res. 33, 6674–6687 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steiner, M., Karunatilaka, K. S., Sigel, R. K. & Rueda, D. Single-molecule studies of group II intron ribozymes. Proc. Natl Acad. Sci. USA 105, 13853–13858 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steiner, M., Rueda, D. & Sigel, R. K. O. Ca2+ induces the formation of two distinct subpopulations of group II intron molecules. Angew. Chem. Int. Ed. 48, 9739–9742 (2009)

    Article  CAS  Google Scholar 

  19. Noah, J. W. & Lambowitz, A. M. Effects of maturase binding and Mg2+ concentration on group II intron RNA folding investigated by UV cross-linking. Biochemistry 42, 12466–12480 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, A., Derbyshire, V., Salvo, J. L. & Belfort, M. Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro . RNA 1, 783–793 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Clodi, E., Semrad, K. & Schroeder, R. Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J. 18, 3776–3782 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fedorova, O., Solem, A. & Pyle, A. M. Protein-facilitated folding of group II intron ribozymes. J. Mol. Biol. 397, 799–813 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waldsich, C. & Pyle, A. M. A folding control element for tertiary collapse of a group II intron ribozyme. Nature Struct. Mol. Biol. 14, 37–44 (2007)

    Article  CAS  Google Scholar 

  24. Fedorova, O., Waldsich, C. & Pyle, A. M. Group II intron folding under near-physiological conditions: collapsing to the near-native state. J. Mol. Biol. 366, 1099–1114 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Levin, J. G., Guo, J., Rouzina, I. & Musier-Forsyth, K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog. Nucleic Acid Res. Mol. Biol. 80, 217–286 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Lamichhane, R. et al. RNA looping by PTB: evidence using FRET and NMR spectroscopy and for a role in splicing repression. Proc. Natl Acad. Sci. USA 107, 4105–4110 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hopkins, J. F., Panja, S., McNeil, S. A. & Woodson, S. A. Effect of salt and RNA structure on annealing and strand displacement by Hfq. Nucleic Acids Res. 37, 6205–6213 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bifano, A. L., Turk, E. M. & Caprara, M. G. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing. J. Mol. Biol. 398, 429–443 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, F., Putnam, A. & Jankowsky, E. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl Acad. Sci. USA 105, 20209–20214 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zingler, N., Solem, A. & Pyle, A. M. Dual roles for the Mss116 cofactor during splicing of the ai5γ group II intron. Nucleic Acids Res. (in the press). (2010)

  32. Zhao, R. & Rueda, D. RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 49, 112–117 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Christian, T. D., Romano, L. J. & Rueda, D. Single molecule measurements of synthesis by DNA polymerase with base-pair resolution. Proc. Natl Acad. Sci. USA 106, 21109–21114 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shuman, S., Spencer, E., Furneaux, H. & Hurwitz, J. The role of ATP in in vitro vaccinia virus RNA synthesis effects of AMP-PNP and ATPγS. J. Biol. Chem. 255, 5396–5403 (1980)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. K. Sigel and O. Fedorova for many helpful and stimulating discussions and for commenting on the manuscript, and A. Feig, K. Musier-Forsyth and R. Lamichhane for protein gifts. This work was supported by the National Institutes of Health (R01GM085116 to D.R., R01GM050313 to A.M.P.) and the National Science Foundation (MCB-0747285 to D.R.). A.M.P. is an HHMI investigator.

Author information

Authors and Affiliations

Authors

Contributions

D.R. and A.M.P. conceived and designed the experiments. K.S.K. performed and analysed the experiments with help from A.S. All authors wrote the manuscript.

Corresponding authors

Correspondence to Anna Marie Pyle or David Rueda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 with legends and Supplementary Tables 1-3. (PDF 452 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karunatilaka, K., Solem, A., Pyle, A. et al. Single-molecule analysis of Mss116-mediated group II intron folding. Nature 467, 935–939 (2010). https://doi.org/10.1038/nature09422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09422

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing