Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A role for host–parasite interactions in the horizontal transfer of transposons across phyla

Abstract

Horizontal transfer (HT), or the passage of genetic material between non-mating species, is increasingly recognized as an important force in the evolution of eukaryotic genomes1,2. Transposons, with their inherent ability to mobilize and amplify within genomes, may be especially prone to HT3,4,5,6,7. However, the means by which transposons can spread across widely diverged species remain elusive. Here we present evidence that host–parasite interactions have promoted the HT of four transposon families between invertebrates and vertebrates. We found that Rhodnius prolixus, a triatomine bug feeding on the blood of various tetrapods and vector of Chagas’ disease in humans, carries in its genome four distinct transposon families that also invaded the genomes of a diverse, but overlapping, set of tetrapods. The bug transposons are 98% identical and cluster phylogenetically with those of the opossum and squirrel monkey, two of its preferred mammalian hosts in South America. We also identified one of these transposon families in the pond snail Lymnaea stagnalis, a cosmopolitan vector of trematodes infecting diverse vertebrates, whose ancestral sequence is nearly identical and clusters with those found in Old World mammals. Together these data provide evidence for a previously hypothesized role of host–parasite interactions in facilitating HT among animals3,7. Furthermore, the large amount of DNA generated by the amplification of the horizontally transferred transposons supports the idea that the exchange of genetic material between hosts and parasites influences their genomic evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Taxonomic distribution and age of SPIN, OC1, ET and hAT1.
Figure 2: Biogeographic and phylogenetic evidence supporting horizontal transfers of SPIN and OC1 transposons on multiple continents.

References

  1. Keeling, P. J. & Palmer, J. D. Horizontal transfer in eukaryotic evolution. Nature Rev. Genet. 9, 605–618 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. Gladyshev, E. A., Meselson, M. & Arkhipova, I. R. Massive horizontal gene transfer in bdelloid rotifers. Science 320, 1210–1213 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Loreto, E. L., Carareto, C. M. & Capy, P. Revisiting horizontal transfer of transposable elements in Drosophila . Heredity 100, 545–554 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Diao, X., Freeling, M. & Lisch, D. Horizontal transfer of a plant transposon. PLoS Biol. 4, e5 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Pace, J. K., Gilbert, C., Clark, M. S. & Feschotte, C. Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc. Natl Acad. Sci. USA 105, 17023–17028 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Novick, P. et al. Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. Gene 449, 85–94 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. Houck, M. A., Clark, J. B., Peterson, K. R. & Kidwell, M. G. Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis . Science 6, 1125–1129 (1991)

    Article  ADS  Google Scholar 

  8. Lent, H. & Wygodzinsky, P. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas disease. Bull. Am. Mus. Nat. Hist. 163, 123–520 (1979)

    Google Scholar 

  9. Loy, C. & Haas, W. Prevalence of cercariae from Lymnaea stagnalis snails in a pond system in Southern Germany. Parasitol. Res. 87, 878–882 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Ray, D. A., Pagan, H. J. T., Thompson, M. L. & Stevens, R. D. Bats with hATs: Evidence for recent DNA transposon activity in genus Myotis . Mol. Biol. Evol. 24, 632–639 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-3.0 (1996–2004); 〈http://www.repeatmasker.org〉.

  12. Robertson, H. M. in Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.) 1093–1110 (ASM, 2002)

    Book  Google Scholar 

  13. Marshall, E. et al. Calibration of the great American interchange. Science 204, 272–279 (1979)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Maia Da Silva, F. et al. Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. Mol. Ecol. 16, 3361–3373 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Maia Da Silva, F. et al. Trypanosoma rangeli isolates of bats from Central Brazil: genotyping and phylogenetic analysis enable description of a new lineage using spliced-leader gene sequences. Acta Trop. 109, 199–207 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Hecht, M. M. et al. Inheritance of DNA transferred from American trypanosomes to human hosts. PLoS ONE 5, e9181 (2010)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rogan, M. T. et al. The occurrence of the trematode Plagiorchis muris in the wood mouse Apodemus sylvaticus in North Yorkshire, UK. J. Helminthol. 81, 57–62 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Zbikowska, E. et al. Infestation of Lymnaea stagnalis by Digenea flukes in the Jeziorak lake. Parasitol. Res. 99, 434–439 (2006)

    Article  PubMed  Google Scholar 

  19. Piskurek, O. & Okada, N. Poxviruses as possible vectors of horizontal transfer of retroposons from reptiles to mammals. Proc. Natl Acad. Sci. USA 104, 12046–12051 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fraser, M. J., Smith, G. E. & Summers, M. D. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedris viruses. J. Virol. 47, 287–300 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friesen, P. D. & Nissen, M. S. Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol. Cell. Biol. 10, 3067–3077 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jehle, J. A., Nickel, A., Vlak, J. M. & Backhaus, H. J. Horizontal escape of the novel Tc1-like lepidopteran transposon TCp3.2 into Cydia pomonella granulovirus. J. Mol. Evol. 46, 215–224 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Heath, B. D., Butcher, R. D. J., Whitfield, W. G. F. & Hubbard, S. F. Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr. Biol. 9, 313–316 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Huigens, M. E. et al. Infectious parthenogenesis. Nature 405, 178–179 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Yoshiyama, M. et al. Possible horizontal transfer of a transposable element from host to parasitoid. Mol. Biol. Evol. 18, 1952–1958 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Mower, J. P., Stefanovic, S., Young, G. J. & Palmer, J. D. Gene transfer from parasitic to host plants. Nature 432, 165–166 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Davis, C. C. & Wurdack, K. J. Host to parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305, 676–678 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Feschotte, C. & Pritham, E. J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nature Rev. Genet. 10, 691–703 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl Acad. Sci. USA 99, 803–808 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altschul, S. F. et al. Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  CAS  PubMed  Google Scholar 

  32. Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. Gentles, A. J. & Jurka, J. HAT2_MD — an autonomous hAT transposon from Monodelphis domestica; consensus sequence. Repbase Report 5, 10 (2005)

    Google Scholar 

  34. Ray, D. A. et al. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus . Genome Res. 18, 717–728 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jukes, T. H. & Cantor, C. R. in Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Academic, 1969)

    Book  Google Scholar 

  36. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Yamanoue, Y. et al. The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes Genet. Syst. 81, 29–39 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Steinke, D., Salzburger, W. & Meyer, A. Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J. Mol. Evol. 62, 772–784 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Cutter, A. D. Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate. Mol. Biol. Evol. 25, 778–786 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. De Giorgi, C. et al. Structural and evolutionary analysis of the ribosomal genes of the parasitic nematode Meloidogyne artiellia suggests its ancient origin. Mol. Biochem. Parasitol. 124, 91–94 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Morgan, J. A. T. et al. Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitology 123, S211–S228 (2001)

    Article  PubMed  Google Scholar 

  43. Wiegmann, B. M. et al. Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol. 7, 34 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yoder, A. D. et al. Ancient origin for Malagasy primates. Proc. Natl Acad. Sci. USA 93, 5122–5126 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Evans, B. J. et al. A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implication for polyploidy evolution. Mol. Phylogenet. Evol. 33, 197–213 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. Wilson, D. E. & Reeder, D. M. Mammal Species of the World: A Taxonomic and Geographic Reference (Smithsonian Institution Press, 2005)

    Google Scholar 

  47. Poux, C. et al. Asynchronous colonization of Madagascar by the four endemic clades of primates, tenrecs, carnivores, and rodents as inferred from nuclear genes. Syst. Biol. 54, 719–730 (2005)

    Article  PubMed  Google Scholar 

  48. Gebo, D. L. et al. The oldest known anthropoid postcranial fossils and the early evolution of higher primates. Nature 404, 276–278 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Rossie, J. B., Ni, X. J. & Beard, K. C. Cranial remains of an Eocene tarsier. Proc. Natl Acad. Sci. USA 103, 4381–4385 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Steiner, C., Tilak, M., Douzery, E. J. P. & Catzeflis, F. M. New DNA data from a transthyretin nuclear intron suggest an Oligocene to Miocene diversification of living South America opossums (Marsupialia: Didelphidae). Mol. Phylogenet. Evol. 35, 363–379 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. Roughgarden, J. Ed. Anolis Lizards of the Caribbean. Ecology, Evolution and Plate Tectonics (Oxford Univ. Press, 1995)

    Google Scholar 

  52. Stadelmann, B., Lin, L. K., Kunz, T. H. & Ruedi, M. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol. Phylogenet. Evol. 43, 32–48 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. Steppan, S. J., Adkins, R. M. & Anderson, J. Phylogeny and divergence-date estimates of rapid radiation in muroid rodents based on multiple nuclear genes. Syst. Biol. 53, 533–553 (2004)

    Article  PubMed  Google Scholar 

  54. Poux, C. et al. Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst. Biol. 55, 228–244 (2006)

    Article  PubMed  Google Scholar 

  55. Gaunt, M. W. & Miles, M. A. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol. Biol. Evol. 19, 748–761 (2002)

    Article  CAS  PubMed  Google Scholar 

  56. Remigio, E. A. Molecular phylogenetic relationships in the aquatic snail genus Lymnaea, the intermediate host of the causative agent of fascioliasis: insights from broader taxon sampling. Parasitol. Res. 88, 687–696 (2002)

    Article  CAS  PubMed  Google Scholar 

  57. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003)

    Article  PubMed  Google Scholar 

  58. Hall, T. BioEdit version 5.0.6. 〈http://www.mbio.ncsu.edu/BioEdit/bioedit.html/〉 (2004)

  59. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998)

    Article  CAS  PubMed  Google Scholar 

  60. Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992)

    CAS  PubMed  Google Scholar 

  61. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009)

    Article  CAS  PubMed  Google Scholar 

  62. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Betrán, J. Demuth, T. Fondon, B. Koskella, J. Meik, E. Pritham, Q. Wang and members of the Feschotte laboratory for comments and suggestions during the preparation of the manuscript; M. Batzer, E. Dotson, S. Goodman, A. Prelat, T. Robinson, A. Ropiquet and the Grosell and Sánchez laboratories for the gifts of tissue samples used in this study; and J. Spieth and The Genome Center at Washington University School of Medicine in St Louis for permission to use the R. prolixus assembly before publication. C.F. is funded by the National Institutes of Health and S.S. by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.G., S.S. and C.F. designed research, performed research, and analysed data. J.K.P. contributed data and perl scripts. P.J.B. contributed reagents and materials. C.G., S.S. and C.F. wrote the paper.

Corresponding author

Correspondence to Cédric Feschotte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-5 and Supplementary Figures 1-6 with legends and references. (PDF 1978 kb)

Supplementary Data

This file contains Supplementary Datasets 1-3. (PDF 761 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, C., Schaack, S., Pace II, J. et al. A role for host–parasite interactions in the horizontal transfer of transposons across phyla. Nature 464, 1347–1350 (2010). https://doi.org/10.1038/nature08939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08939

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research