Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates

Abstract

Adapiform or ‘adapoid’ primates first appear in the fossil record in the earliest Eocene epoch (55 million years (Myr) ago), and were common components of Palaeogene primate communities in Europe, Asia and North America1. Adapiforms are commonly referred to as the ‘lemur-like’ primates of the Eocene epoch, and recent phylogenetic analyses have placed adapiforms as stem members of Strepsirrhini2,3,4, a primate suborder whose crown clade includes lemurs, lorises and galagos. An alternative view is that adapiforms are stem anthropoids5. This debate has recently been rekindled by the description of a largely complete skeleton of the adapiform Darwinius6, from the middle Eocene of Europe, which has been widely publicised as an important ‘link’ in the early evolution of Anthropoidea7. Here we describe the complete dentition and jaw of a large-bodied adapiform (Afradapis gen. nov.) from the earliest late Eocene of Egypt (37 Myr ago) that exhibits a striking series of derived dental and gnathic features that also occur in younger anthropoid primates—notably the earliest catarrhine ancestors of Old World monkeys and apes. Phylogenetic analysis of 360 morphological features scored across 117 living and extinct primates (including all candidate stem anthropoids) does not place adapiforms as haplorhines (that is, members of a Tarsius–Anthropoidea clade) or as stem anthropoids, but rather as sister taxa of crown Strepsirrhini; Afradapis and Darwinius are placed in a geographically widespread clade of caenopithecine adapiforms that left no known descendants. The specialized morphological features that these adapiforms share with anthropoids are therefore most parsimoniously interpreted as evolutionary convergences. As the largest non-anthropoid primate ever documented in Afro-Arabia, Afradapis nevertheless provides surprising new evidence for prosimian diversity in the Eocene of Africa, and raises the possibility that ecological competition between adapiforms and higher primates might have played an important role during the early evolution of stem and crown Anthropoidea in Afro-Arabia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dental and mandibular remains of Afradapis longicristatus gen. et sp. nov.
Figure 2: Reconstruction of the mandible and lower dentition of Afradapis longicristatus , gen. et sp. nov.
Figure 3: Phylogenetic position of the adapiforms Afradapis and Darwinius within Primates.

References

  1. Godinot, M. A summary of adapiform systematics and phylogeny. Folia Primatol. (Basel) 69 (suppl. 1). 218–249 (1998)

    Article  Google Scholar 

  2. Marivaux, L. et al. Anthropoid primates from the Oligocene of Pakistan (Bugti Hills): data on early anthropoid evolution and biogeography. Proc. Natl Acad. Sci. USA 102, 8436–8441 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Ross, C., Williams, B. & Kay, R. F. Phylogenetic analysis of anthropoid relationships. J. Hum. Evol. 35, 221–306 (1998)

    Article  CAS  Google Scholar 

  4. Seiffert, E. R. et al. Basal anthropoids from Egypt and the antiquity of Africa’s higher primate radiation. Science 310, 300–304 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Rasmussen, D. T. in Anthropoid Origins (eds Fleagle, J. G. & Kay, R. F.) 335–360 (Plenum, 1994)

    Book  Google Scholar 

  6. Franzen, J. L. et al. Complete primate skeleton from the middle Eocene of Messel in Germany: morphology and paleobiology. PLoS ONE 4, e5723 (2009)

    Article  ADS  Google Scholar 

  7. Tudge, C. The Link: Uncovering Our Earliest Ancestor (Little, Brown & Company, 2009)

    Google Scholar 

  8. Seiffert, E. R., Simons, E. L. & Attia, Y. Fossil evidence for an ancient divergence of lorises and galagos. Nature 422, 421–424 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Seiffert, E. R. Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman. Proc. Natl Acad. Sci. USA 103, 5000–5005 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Gingerich, P. D. Marine mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: stratigraphy, age, and paleoenvironments. Univ. Mich. Pap. Paleont. 30, 1–84 (1992)

    Google Scholar 

  11. Seiffert, E. R., Bown, T. M., Clyde, W. C. & Simons, E. L. in Elwyn L. Simons: A Search for Origins (eds Fleagle, J. G. & Gilbert, C. C.) 71–86 (Springer, 2008)

    Book  Google Scholar 

  12. Conroy, G. C. Problems of body-weight estimation in fossil primates. Int. J. Primatol. 8, 115–137 (1987)

    Article  Google Scholar 

  13. Kay, R. F. & Simons, E. L. The ecology of Oligocene African Anthropoidea. Int. J. Primatol. 1, 21–37 (1980)

    Article  Google Scholar 

  14. Simons, E. L. Discovery of the oldest known anthropoidean skull from the Paleogene of Egypt. Science 247, 1567–1569 (1990)

    Article  ADS  CAS  Google Scholar 

  15. Simons, E. L., Rasmussen, D. T. & Gingerich, P. D. New cercamoniine adapid from Fayum, Egypt. J. Hum. Evol. 29, 577–589 (1995)

    Article  Google Scholar 

  16. Rasmussen, D. T. The phylogenetic position of Mahgarita stevensi: protoanthropoid or lemuroid? Int. J. Primatol. 11, 439–469 (1990)

    Article  Google Scholar 

  17. Wilson, J. A. & Szalay, F. S. New adapid primate of European affinities from Texas. Folia Primatol. (Basel) 25, 294–312 (1976)

    Article  CAS  Google Scholar 

  18. Stehlin, H. G. Die Säugetiere des schweizerischen Eocaens. Abh. Schweiz. Paläont. Ges. 41, 1299–1552 (1916)

    Google Scholar 

  19. Ross, C. F. in Anthropoid Origins (eds Fleagle, J. G. & Kay, R. F.) 469–548 (Plenum, 1994)

    Book  Google Scholar 

  20. Simons, E. L. & Rasmussen, D. T. Skull of Catopithecus browni, an early Tertiary catarrhine. Am. J. Phys. Anthropol. 100, 261–292 (1996)

    Article  CAS  Google Scholar 

  21. Miller, E. R. & Simons, E. L. Dentition of Proteopithecus sylviae, an archaic anthropoid from the Fayum, Egypt. Proc. Natl Acad. Sci. USA 94, 13760–13764 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Seiffert, E. R., Simons, E. L., Ryan, T. M. & Attia, Y. Additional remains of Wadilemur elegans, a primitive stem galagid from the late Eocene of Egypt. Proc. Natl Acad. Sci. USA 102, 11396–11401 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Swofford, D. L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4 (Sinauer Associates, 1998)

  24. Rose, K. D. et al. Early Eocene Primates from Gujarat, India. J. Hum. Evol. 56, 366–404 (2009)

    Article  Google Scholar 

  25. Gheerbrant, E. & Rage, J. C. Paleobiogeography of Africa: How distinct from Gondwana and Laurasia? Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 224–246 (2006)

    Article  Google Scholar 

  26. Tabuce, R. & Marivaux, L. Mammalian interchanges between Africa and Eurasia: an analysis of temporal constraints on plausible anthropoid dispersals during the Paleogene. Anthropol. Sci. 113, 27–32 (2005)

    Article  Google Scholar 

  27. Chaimanee, Y., Suteethorn, V., Jaeger, J.-J. & Ducrocq, S. A new late Eocene anthropoid primate from Thailand. Nature 385, 429–431 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Jaeger, J.-J. et al. A new primate from the Middle Eocene of Myanmar and the Asian early origin of anthropoids. Science 286, 528–530 (1999)

    Article  CAS  Google Scholar 

  29. Beard, K. C., Qi, T., Dawson, M. R., Wang, B. & Li, C. A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China. Nature 368, 604–609 (1994)

    Article  ADS  CAS  Google Scholar 

  30. Roos, C., Schmitz, J. & Zischler, H. Primate jumping genes elucidate strepsirrhine phylogeny. Proc. Natl Acad. Sci. USA 101, 10650–10654 (2004)

    Article  ADS  CAS  Google Scholar 

  31. Dagosto, M., Gebo, D. L. & Beard, K. C. Revision of the Wind River faunas, early Eocene of central Wyoming. Part 14. Postcranium of Shoshonius cooperi (Mammalia, Primates). Ann. Carnegie Mus. 68, 175–211 (1999)

    Google Scholar 

  32. Gebo, D. L., Dagosto, M., Beard, K. C. & Qi, T. Middle Eocene primate tarsals from China: implications for haplorhine evolution. Am. J. Phys. Anthropol. 116, 83–107 (2001)

    Article  CAS  Google Scholar 

  33. Kay, R. F., Williams, B. A., Ross, C. F., Takai, M. & Shigehara, N. in Anthropoid Origins: New Visions (eds Ross, C. F. & Kay, R. F.) 91–135 (Kluwer, 2004)

    Book  Google Scholar 

  34. Masters, J. C. & Brothers, D. J. Lack of congruence between morphological and molecular data in reconstructing the phylogeny of the Galagonidae. Am. J. Phys. Anthropol. 117, 79–93 (2002)

    Article  Google Scholar 

  35. Yoder, A. D. Relative position of the Cheirogaleidae in strepsirhine phylogeny: A comparison of morphological and molecular results and methods. Am. J. Phys. Anthropol. 94, 25–46 (1994)

    Article  CAS  Google Scholar 

  36. Yoder, A. D., Irwin, J. A. & Payseur, B. A. Failure of the ILD to determine data combinability for slow loris phylogeny. Syst. Biol. 50, 408–424 (2001)

    Article  CAS  Google Scholar 

  37. Franzen, J. L. Der sechste Messel-primate (Mammalia, Primates, Notharctidae, Cercamoniinae). Senckenbergiana Lethaea 80, 289–303 (2000)

    Article  Google Scholar 

  38. Savage, R. J. G., Domning, D. P. & Thewissen, J. G. M. Fossil Sirenia of the west Atlantic and Caribbean region. V. The most primitive known sirenian, Prorastomus sirenoides Owen, 1855. J. Vert. Paleo. 14, 427–449 (1994)

    Article  Google Scholar 

  39. Thewissen, J. G. M. & Williams, E. M. The early radiations of Cetacea (Mammalia): Evolutionary pattern and developmental correlations. Annu. Rev. Ecol. Syst. 33, 73–90 (2002)

    Article  Google Scholar 

  40. Uhen, M. D. A new Xenophorus-like odontocete cetacean from the Oligocene of North Carolina and a discussion of the basal odontocete radiation. J. Syst. Palaeontology 6, 433–452 (2008)

    Article  Google Scholar 

  41. Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J. & de Jong, W. W. Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl Acad. Sci. USA 98, 6241–6246 (2001)

    Article  ADS  CAS  Google Scholar 

  42. Ciochon, R. L., Gingerich, P. D., Gunnell, G. F. & Simons, E. L. Primate postcrania from the late middle Eocene of Myanmar. Proc. Natl Acad. Sci. USA 98, 7672–7677 (2001)

    Article  ADS  CAS  Google Scholar 

  43. Beard, K. C. et al. New sivaladapid primates from the Eocene Pondaung Formation of Myanmar and the anthropoid status of Amphipithecidae. Bull. Carnegie Mus. Nat. Hist. 39, 67–76 (2007)

    Article  Google Scholar 

  44. Gunnell, G. F., Ciochon, R. L., Gingerich, P. D. & Holroyd, P. A. New assessment of Pondaungia and Amphipithecus (Primates) from the late middle Eocene of Myanmar, with a comment on “Amphipithecidae”. Contr. Mus. Paleont. Univ. Mich. 30, 337–372 (2002)

    Google Scholar 

  45. Beard, K. C. et al. Taxonomic status of purported primate frontal bones from the Eocene Pondaung Formation of Myanmar. J. Hum. Evol. 49, 468–481 (2005)

    Article  Google Scholar 

  46. Ciochon, R. L. & Gunnell, G. F. Eocene primates from Myanmar: Historical perspectives on the origin of Anthropoidea. Evol. Anthropol. 11, 156–168 (2002)

    Article  Google Scholar 

  47. MacPhee, R. D. E., Beard, K. C. & Qi, T. Significance of primate petrosal from middle Eocene fissure-fillings at Shanghuang, Jiangsu Province, People's Republic of China. J. Hum. Evol. 29, 501–514 (1995)

    Article  Google Scholar 

  48. Ross, C. F. & Covert, H. H. The petrosal of Omomys carteri and the evolution of the primate basicranium. J. Hum. Evol. 39, 225–251 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. C. Beard, P. Chatrath, B. Engesser, M. Hellmund, J. Galkin, P. D. Gingerich, M. Godinot, G. Gunnell, E. Ladier, B. Marandat, L. Marivaux, K. D. Rose, I. Rutzky and P. Tassy for access to adapiform fossils and casts. F. Ankel-Simons and J. Fleagle provided comments on the manuscript. Collaborative palaeontological research in Egypt is made possible through cooperation with the Egyptian Mineral Resources Authority and the Egyptian Geological Museum. Fieldwork in Egypt is managed by P. Chatrath. This research has been funded by the Research Foundation of SUNY, and grants from the US National Science Foundation and The Leakey Foundation to E.R.S. and E.L.S. This is Duke Lemur Center publication 1155.

Author Contributions E.R.S. and E.L.S. recovered the fossils of Afradapis along with other members of their field crews in Egypt; E.R.S. assembled the character matrix and all figures, created Figs 2 and 3, ran the phylogenetic analyses, and compiled the Supplementary Information document; E.R.S. and J.M.G.P. analysed the fossils and wrote the manuscript; D.M.B. and J.M.G.P. CT-scanned fossils and provided three-dimensional reconstructions for Fig. 1. D.M.B. scored plesiadapiforms in the character matrix and helped to write the manuscript. E.L.S. helped to write the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik R. Seiffert.

Supplementary information

Supplementary Information

This file contains dental measurements of Afradapis longicristatus gen. et sp. nov., full results of phylogenetic analyses, morphological character support for nodes within Strepsirrhini, the morphological character matrix, and the constraint tree used in the phylogenetic analysis. (PDF 1635 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiffert, E., Perry, J., Simons, E. et al. Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates. Nature 461, 1118–1121 (2009). https://doi.org/10.1038/nature08429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08429

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing