Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum

A Corrigendum to this article was published on 05 October 2006

Abstract

The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world1,2,3. This warming is associated with a severe shoaling of the ocean calcite compensation depth4 and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates1,2,3,4. Together these observations indicate a massive release of 13C-depleted carbon4 and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean5, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming6. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity2. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion—and associated carbon input—was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stable isotope results, and data on sea surface temperature, dinocysts and biomarkers.
Figure 2: δD of precipitation and Arctic surface water, and salinity.

References

  1. Zachos, J. et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302, 1551–1554 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C. & Quattlebaum, T. A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 432, 495–499 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E. & Bohaty, S. Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30, 1067–1070 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611–1615 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Backman, J., Moran, K., McInroy, D. B., Mayer, L. A. & Expedition Scientists. Arctic Coring Expedition (ACEX). Proc. IODP 302 l/doi:10.2204/iodp.proc.302.2006 (Integrated Ocean Drilling Program Management International, College Station, Texas, 2006).

  6. Caballero, R. & Langen, P. The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett. 32, doi:10.1029/2004GL021581 (2005)

  7. Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441, 610–613 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zegouagh, Y., Derenne, S., Largeau, C., Bardoux, G. & Mariotti, A. Organic matter sources and early diagenetic alteration in Arctic surface sediments (Lena River delta and Laptev Sea, Eastern Siberia), II. Molecular and isotopic studies of hydrocarbons. Org. Geochem. 28, 571–583 (1998)

    Article  CAS  Google Scholar 

  10. Han, J. & Calvin, M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc. Natl Acad. Sci. USA 64, 436–443 (1969)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grimalt, J. & Albaiges, J. Sources and occurrence of C12–22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochim. Cosmochim. Acta 51, 1379–1384 (1987)

    Article  ADS  CAS  Google Scholar 

  12. Muri, G., Wakeham, S. G., Pease, T. K. & Faganeli, J. Evaluation of lipid biomarkers as indicators of changes in organic matter delivery to sediments from Lake Planina, a remote mountain lake in NW Slovenia. Org. Geochem. 35, 1083–1093 (2004)

    Article  CAS  Google Scholar 

  13. Sachse, D., Radke, J. & Gleixner, G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim. Cosmochim. Acta 68, 4877–4889 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Sternberg, L. D. L. D/H ratios of environmental water recorded by D/H ratios of plant lipids. Nature 333, 59–61 (1988)

    Article  ADS  Google Scholar 

  15. Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Sessions, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65, 213–222 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Yakir, D. in Stable Isotopes (ed. Griffiths, H.) 147–168 (BIOS Scientific Publishers, Oxford, 1998)

    Google Scholar 

  17. Chikaraishi, Y. & Naraoka, H. Compound-specific δD and δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63, 361–371 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Yang, H., Equiza, A. M., Jagels, R., Pagani, M. & Briggs, D. Carbon and hydrogen isotopic compositions of deciduous conifers under a continuous-light environment: implications for the interpretation of the high-latitudinal plant isotope record at the PETM. (Salt Lake City Annual Meeting, October 16–19, The Geological Society of America, 2005).

  19. Bowen, G. J. & Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Wat. Resour. Res. 39, doi:10.1029/2003WR002086 (2003)

  20. Pierrehumbert, R. T. Lateral mixing as a source of subtropical water vapor. Geophys. Res. Lett. 25, 151–154 (1998)

    Article  ADS  Google Scholar 

  21. Boyle, E. A. Cool tropical temperatures shift the global δ18O-T relationship: An explanation for the ice core δ18O-borehole thermometry conflict? Geophys. Res. Lett. 24, 273–276 (1997)

    Article  ADS  Google Scholar 

  22. Pierrehumbert, R. T. The hydrologic cycle in deep time climate problems. Nature 419, 191–198 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Koch, P. L. et al. in Causes and Consequences of Globally Warm Climates in the Early Paleogene (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) 49–64 (Special Paper 369, Geological Society of America, Boulder, 2003)

    Book  Google Scholar 

  24. Fricke, H. C., Clyde, W. C., O'Neil, J. R. & Gingerich, P. D. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet. Sci. Lett. 160, 193–208 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Leavitt, S. W. & Newberry, T. Systematics of stable-carbon isotopic differences between gymnosperm and angiosperm trees. Plant Physiol. 11, 257–262 (1992)

    Google Scholar 

  26. Spero, H. J., Bijma, J., Lea, D. W. & Bernis, B. E. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390, 497–500 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Arthur, M. A., Walter, D. E. & Claypool, G. E. Anomalous 13C enrichment in modern marine organic carbon. Nature 315, 216–218 (1985)

    Article  ADS  CAS  Google Scholar 

  28. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Popp, B. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Bujak, J. P. & Brinkhuis, H. in Late Paleocene - Early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records (eds Aubry, M.-P., Lucas, S. G. & Berggren, W. A.) 277–295 (Columbia Univ. Press, New York, 1998)

    Google Scholar 

  31. Railsback, L. B., Anderson, T. F., Ackerly, S. C. & Cisne, J. L. Paleoceanographic modeling of temperature-salinity profiles from stable isotopic data. Paleoceanography 4, 585–591 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.P. thanks K. Turekian for conversations, and G. Bowen for comments and suggestions that substantially improved the manuscript. M.H. thanks the Purdue Research Foundation, ITaP, NCAR, NSF and L. C. Sloan for support for this research. A.S. thanks Utrecht Biogeology Centre for funding. H.B. thanks NWO, the Netherlands Organization for Scientific Research, and Utrecht University for enabling participation. We appreciate technical assistance provided by C. Valache, A. McLawhorn and G. Olack. This research used samples and data provided by the Integrated Ocean Drilling Program (IODP), which is sponsored by the US NSF and participating countries under the management of Joint Oceanographic Institutions (JOI) Inc.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Mark Pagani.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Additional information

A list of authors and affiliations appears at the end of the paper

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagani, M., Pedentchouk, N., Huber, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–675 (2006). https://doi.org/10.1038/nature05043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05043

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing