Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light speed reduction to 17 metres per second in an ultracold atomic gas

Abstract

Techniques that use quantum interference effects are being actively investigated to manipulate the optical properties of quantum systems1. One such example is electromagnetically induced transparency, a quantum effect that permits the propagation of light pulses through an otherwise opaque medium2,3,4,5. Here we report an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum. The gas is cooled to nanokelvin temperatures by laser and evaporative cooling6,7,8,9,10. The quantum interference controlling the optical properties of the medium is set up by a ‘coupling’ laser beam propagating at a right angle to the pulsed ‘probe’ beam. At nanokelvin temperatures, the variation of refractive index with probe frequency can be made very steep. In conjunction with the high atomic density, this results in the exceptionally low light speeds observed. By cooling the cloud below the transition temperature for Bose–Einstein condensation11,12,13 (causing a macroscopic population of alkali atoms in the quantum ground state of the confining potential), we observe even lower pulse propagation velocities (17?m?s−1) owing to the increased atom density. We report an inferred nonlinear refractive index of 0.18?cm2?W−1 and find that the system shows exceptionally large optical nonlinearities, which are of potential fundamental and technological interest for quantum optics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Effect of probe detuning.
Figure 3: Pulse delay measurement.
Figure 4: Light speed versus atom cloud temperature.

Similar content being viewed by others

References

  1. Knight, P. L., Stoicheff, B. & Walls, D. (eds) Highlights in quantum optics. Phil. Trans. R. Soc. Lond. A 355, 2215–2416 (1997).

    ADS  MATH  Google Scholar 

  2. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997).

    Article  ADS  Google Scholar 

  3. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, (1997)).

    Book  Google Scholar 

  4. Arimondo, E. in Progress in Optics (ed. Wolf, E.) 257–354 (Elsevier Science, Amsterdam, (1996)).

    MATH  Google Scholar 

  5. Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1006 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Chu, S. The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Cohen-Tannoudjii, C. N. Manipulating atoms with photons. Rev. Mod. Phys. 70 , 707–719 (1998).

    Article  ADS  Google Scholar 

  8. Phillips, W. D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Hess, H. F. Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys. Rev. B 34, 3476– 3479 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Masuhara, N. et al. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935–938 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Hau, L. V. et al. Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic bottle. Phys. Rev. A 58, R54– R57 (1998).

    Google Scholar 

  15. Hau, L. V., Golovchenko, J. A. & Burns, M. M. Anew atomic beam source: The “candlestick”. Rev. Sci. Instrum. 65, 3746– 3750 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Harris, S. E., Field, J. E. & Kasapi, A. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 46, R29– R32 (1992).

    Article  ADS  Google Scholar 

  17. Grobe, R., Hioe, F. T. & Eberly, J. H. Formation of shape-preserving pulses in a nonlinear adiabatically integrable system. Phys. Rev. Lett. 73 , 3183–3186 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Xiao, M., Li, Y. -Q., Jin, S. -Z. & Gea-Banacloche, J. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666– 669 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Kasapi, A., Jain, M., Yin, G. Y. & Harris, S. E. Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447–2450 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Lambrecht, A., Courty, J. M., Reynaud, S. & Giacobino, E. Cold atoms: A new medium for quantum optics. Appl. Phys. B 60, 129–134 (1995).

    Article  ADS  Google Scholar 

  22. Hall, D. S., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Measurements of relative phase in two-component Bose-Einstein condensates. Phys. Rev. Lett. 81, 1543– 1546 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Ruostekoski, J. & Walls, D. F. Coherent population trapping of Bose-Einstein condensates: detection of phase diffusion. Eur. Phys. J. D (submitted).

  24. Harris, S. E. & Yamamoto, Y. Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611– 3614 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. A. Golovchenko for discussions and C. Liu for experimental assistance. L.V.H. acknowledges support from the Rowland Institute for Science. S.E.H. is supported by the US Air Force Office of Scientific Research, the US Army Research Office, and the US Office of Naval Research. C.H.B. is supported by an NSF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lene Vestergaard Hau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hau, L., Harris, S., Dutton, Z. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999). https://doi.org/10.1038/17561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17561

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing