Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Physical state of volatiles on the surface of Triton

Abstract

The most recent analyses of infrared spectrophotometric studies of Neptune's satellite Triton concluded that both condensed methane and nitrogen are present1,2. It was also concluded2 that the most likely surface configuration is a liquid nitrogen (N2) ‘ocean’ with dry areas of solid methane (CH4), and perhaps some exposed fine-grained water frost (H2O). However, this model runs into some difficulties, especially when requirements of phase equilibrium between the solid and liquid components are imposed. Because an understanding of the distribution and state of volatiles is crucial in interpreting secular changes in Triton's appearance due to seasonal effects3, and in planning observing strategies for the Voyager–Neptune/Triton encounter, we assess here several possible configurations for these volatiles on Triton. We conclude that the simplest volatile configuration which best satisfies the constraints with the least number of ad hoc assumptions is N2 and CH4 both in solid forms, perhaps partly as a microscopic mixture, but more probably as a disequilibrium assemblage, non-uniformly distributed. Thermodynamic equilibrium is then limited by seasonal transport and the finite diffusion time of CH4 in crystalline N2. Although a nitrogen ocean cannot be excluded, it requires very restrictive assumptions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cruikshank, D. P. & Apt, J. Icarus 58, 306–311 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Cruikshank, D. P., Brown, R. H. & Clark, R. N. Icarus 58, 293–305 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Trafton, L. Icarus 58, 312–324 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Rieke, G. H., Lebofsky, M. J. & Lebofsky, L. A. Nature (in the press).

  5. Moran, D. W. thesis, Imperial College, London (1959).

  6. Omar, M. H., Dokoupil, Z. & Schroten, H. G. M. Physica 28, 309–329 (1962); Connolley, D., Milbrodt, T. & Stoner, R. J. J. chem. Phys. 73, 5388–5390 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Lunine, J. I. thesis, California Institute of Technology, Pasadena (1985).

  8. Jones, M. C. Far Infrared Absorption in Liquified Gases (NBS Techn. Note 390, Washington DC, 1970).

    Google Scholar 

  9. Patel, C. K. N., Nelson, E. T. & Kerl, R. J. Nature 286, 368–370 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Ewing, G. E. J. chem. Phys. 40, 179–183 (1964).

    Article  ADS  CAS  Google Scholar 

  11. Bulanin, M. O. & Melnik, M. G. Opt. Spectrosc. Suppl. 3, 110–113 (1968).

    Google Scholar 

  12. Kwok, J. & Robinson, G. W. J. chem. Phys. 36, 3137–3140 (1962).

    Article  ADS  CAS  Google Scholar 

  13. Cruikshank, D. P. & Silvaggio, P. M. Astrophys. J. 233, 1016–1020 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Lunine, J. I. & Stevenson, D. J. in Ices in the Solar System (ed. Klinger, J.) (Reidel, Dordreicht, in the press).

  15. Brown, G. N. Jr & Ziegler, W. T. Adv. Cryog. Engng 25, 662–670 (1979).

    Google Scholar 

  16. Rebiai, R., Rest, A. J. & Scurlock, R. G. Nature 305, 412–413 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Hunten, D. M. in The Saturn System (eds Hunten, D. M. & Morrison, D.) 127–140 (NASA CP 2068, 1978).

    Google Scholar 

  18. Hobbs, P. V. Ice Physics. 378 (Clarendon, Oxford, 1974).

    Google Scholar 

  19. Clark, R. N., Fanale, F. P. & Zent, A. P. Icarus 56, 233–245 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Van 'T. Zelfde, P., Omar, M. H., Le Pair-Schroten, H. G. M. & Dokoupil, Z. Physica 38, 241–252 (1968).

    Article  ADS  CAS  Google Scholar 

  21. Long, H. M. & DiPaolo, F. S. Chem. Engng. Prog. Symp. Ser. 59, issue 44, 30–35 (1963).

    CAS  Google Scholar 

  22. Cabana, A., Savitsky, G. B. & Horning, D. F. J. chem. Phys. 39, 2942–2950 (1963).

    Article  ADS  CAS  Google Scholar 

  23. Brown, B. R. in Mellors Comprehensive Treatise on Inorganic and Theoretical Chemistry Vol. 8 (Suppl. 1) 27–149 (Wiley, New York, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunine, J., Stevenson, D. Physical state of volatiles on the surface of Triton. Nature 317, 238–240 (1985). https://doi.org/10.1038/317238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317238a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing