Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

JWST molecular mapping and characterization of Enceladus’ water plume feeding its torus

Abstract

Enceladus is a prime target in the search for life in our Solar System, having an active plume that is likely to be connected to a large liquid water sub-surface ocean. Using the sensitive near-infrared spectograph instrument on board the James Webb Space Telescope, we searched for organic compounds and characterized the plume’s composition and structure. The observations directly sample the fluorescence emissions of H2O and reveal an extraordinarily extensive plume (up to 10,000 km or 40 Enceladus radii) at cryogenic temperatures (25 K) embedded in a large bath of emission originating from Enceladus’ torus. Intriguingly, the observed outgassing rate (300 kg s−1) is similar to that derived from close-up observations with Cassini 15 years ago, and the torus density is consistent with previous spatially unresolved measurements with Herschel 13 years ago, which indicates that the vigour of gas eruption from Enceladus has been relatively stable over decadal timescales. This level of activity is sufficient to maintain a derived column density of 4.5 × 1017 m−2 for the embedding equatorial torus, and establishes Enceladus as the prime source of water across the Saturnian system. We performed searches for several non-water gases (CO2, CO, CH4, C2H6, CH3OH), but none were identified in the spectra. On the surface of the trailing hemisphere, we observe strong H2O ice features, including its crystalline form, yet we do not recover CO2, CO or NH3 ice signatures from these observations. As we prepare to send new spacecraft into the outer Solar System, these observations demonstrate the unique ability of the James Webb Space Telescope to provide critical support for the exploration of distant icy bodies and cryovolcanic plumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enceladus’ surface geometric albedo and detected water vapour emissions.
Fig. 2: Water emission is observed across the whole FOV, revealing an immense water plume and an extended torus.

Similar content being viewed by others

Data availability

The data used in this analysis are publicly available at the Space Telescope Science Institute (STScI) JWST archive (https://mast.stsci.edu/), programme no. 1250.

Code availability

The retrieval software package used in this study is the Planetary Spectrum Generator, which is free and available online at https://psg.gsfc.nasa.gov (refs. 29,30), with the data-reduction scripts available at https://github.com/nasapsg. Figures were made with Matplotlib version 3.2.1 (ref. 60), available under the Matplotlib license at https://matplotlib.org/.

References

  1. Cassidy, T. A. & Johnson, R. E. Collisional spreading of Enceladus’ neutral cloud. Icarus 209, 696–703 (2010).

    ADS  Google Scholar 

  2. Brown, R. H. et al. Composition and physical properties of Enceladus’ surface. Science 311, 1425–1428 (2006).

    ADS  Google Scholar 

  3. Spencer, J. R. et al. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311, 1401–1405 (2006).

    ADS  Google Scholar 

  4. Baum, W. A. et al. Saturn’s E ring: I. CCD observations of March 1980. Icarus 47, 84–96 (1981).

    ADS  Google Scholar 

  5. Haff, P. K., Eviatar, A. & Siscoe, G. L. Ring and plasma: the enigmae of Enceladus. Icarus 56, 426–438 (1983).

    ADS  Google Scholar 

  6. Smith, B. A. et al. A new look at the Saturn system: the Voyager 2 images. Science 215, 504–537 (1982).

    ADS  Google Scholar 

  7. Shemansky, D. E., Matheson, P., Hall, D. T., Hu, H.-Y. & Tripp, T. M. Detection of the hydroxyl radical in the Saturn magnetosphere. Nature 363, 329–331 (1993).

    ADS  Google Scholar 

  8. Dougherty, M. K., Buratti, B. J., Seidelmann, P. K. & Spencer, J. R. Enceladus as an active world: history and discovery. in Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 3–16(University of Arizona Press, 2018); https://doi.org/10.2458/azu_uapress_9780816537075-ch001

  9. Hansen, C. J. et al. Enceladus’ water vapor plume. Science 311, 1422–1425 (2006).

    ADS  Google Scholar 

  10. Porco, C. C. et al. Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006).

    ADS  Google Scholar 

  11. Waite, J. H. et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006).

    ADS  Google Scholar 

  12. Spahn, F. et al. Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006).

    ADS  Google Scholar 

  13. Dougherty, M. K. et al. Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006).

    ADS  Google Scholar 

  14. Schenk, P. M., Clark, R. N., Howett, C. J. A., Verbiscer, A. J. & Waite, J. H. Enceladus and the Icy Moons of Saturn (Univ. Arizona Press, 2018).

  15. Hartogh, P. et al. Direct detection of the Enceladus water torus with Herschel. Astron. Astrophys. 532, L2 (2011).

    ADS  Google Scholar 

  16. Smith, H. T. et al. Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res. Space Phys. https://doi.org/10.1029/2009JA015184 (2010).

  17. Waite, J. H. et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009).

    ADS  Google Scholar 

  18. Hansen, C. J. et al. The composition and structure of Enceladus’ plume from the complete set of Cassini UVIS occultation observations. Icarus 344, 113461 (2020).

    Google Scholar 

  19. Ingersoll, A. P., Ewald, S. P. & Trumbo, S. K. Time variability of the Enceladus plumes: orbital periods, decadal periods, and aperiodic change. Icarus 344, 113345 (2020).

    Google Scholar 

  20. Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    ADS  Google Scholar 

  21. Böker, T. et al. The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope III. Integral-field spectroscopy. Astron. Astrophys. 661, A82 (2022).

    Google Scholar 

  22. Cruikshank, D. et al. A spectroscopic study of the surfaces of Saturn’s large satellites: HO ice, tholins, and minor constituents. Icarus 175, 268–283 (2005).

    ADS  Google Scholar 

  23. Emery, J. P., Burr, D. M., Cruikshank, D. P., Brown, R. H. & Dalton, J. B. Near-infrared (0.8-4.0 m) spectroscopy of Mimas, Enceladus, Tethys, and Rhea. Astron. Astrophys. 435, 353–362 (2005).

    ADS  Google Scholar 

  24. Combe, J.-P. et al. Nature, distribution and origin of CO2 on Enceladus. Icarus 317, 491–508 (2019).

    ADS  Google Scholar 

  25. Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

    ADS  Google Scholar 

  26. Cartwright, R. J. et al. Evidence for ammonia-bearing species on the Uranian satellite Ariel supports recent geologic activity. Astrophys. J. Lett. 898, L22 (2020).

    ADS  Google Scholar 

  27. Zheng, W., Jewitt, D. & Kaiser, R. I. Infrared spectra of ammonia–water ices. Astrophys. J. Suppl. S. 181, 53 (2009).

    ADS  Google Scholar 

  28. Roser, J. E., Ricca, A., Cartwright, R. J., Ore, C. D. & Cruikshank, D. P. The infrared complex refractive index of amorphous ammonia ice at 40 K (1.43–22.73 μm) and Its relevance to outer Solar System bodies. Planet. Sci. J. 2, 240 (2021).

    Google Scholar 

  29. Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S. & Mandell, A. M. Planetary Spectrum Generator: an accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets. J. Quant. Spectrosc. Radiat. Transf. 217, 86–104 (2018).

    ADS  Google Scholar 

  30. Villanueva, G. L. et al. Fundamentals of the Planetary Spectrum Generator (NASA Goddard Space Flight Center, 2022).

  31. Villanueva, G. L. et al. Water in planetary and cometary atmospheres: H2O/HDO transmittance and fluorescence models. J. Quant. Spectrosc. Radiat. Transf. 113, 202–220 (2012).

    ADS  Google Scholar 

  32. Villanueva, G. L., Disanti, M. A., Mumma, M. J. & Xu, L.-H. A quantum band model of the ν3 fundamental of methanol (CH3OH) and its application to fluorescence spectra of comets. Astrophys. J. 747, 37 (2012).

    ADS  Google Scholar 

  33. Villanueva, G. L., Mumma, M. J. & Magee-Sauer, K. Ethane in planetary and cometary atmospheres: transmittance and fluorescence models of the ν7 band at 3.3 μm. J. Geophys. Res. https://doi.org/10.1029/2010JE003794 (2011).

  34. Hansen, C. J. et al. Water vapour jets inside the plume of gas leaving Enceladus. Nature 456, 477–479 (2008).

    ADS  Google Scholar 

  35. Teolis, B. D. et al. Enceladus plume structure and time variability: comparison of Cassini observations. Astrobiology 17, 926–940 (2017).

    ADS  Google Scholar 

  36. Huebner, W. F., Keady, J. J. & Lyon, S. P. Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci. (ISSN 0004-640X) 195, 1–289 (1992).

    ADS  Google Scholar 

  37. Postberg, F. et al. Plume and surface composition of Enceladus. in Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 129–162 (University of Arizona Press, 2018); https://doi.org/10.2458/azu_uapress_9780816537075-ch00

  38. Glein, C. R. & Waite, J. H. The carbonate geochemistry of Enceladus’ ocean. Geophys. Res. Lett. 47, e2019GL085885 (2020).

    ADS  Google Scholar 

  39. Pinto, O. H., Womack, M., Fernandez, Y. & Bauer, J. A survey of CO, CO2, and H2O in comets and centaurs. Planet. Sci. J. 3, 247 (2022).

    Google Scholar 

  40. Ootsubo, T. et al. AKARI near-infrared spectroscopic survey for CO2 in 18 comets. Astrophys. J. 752, 15 (2012).

    ADS  Google Scholar 

  41. MacKenzie, S. M. et al. The Enceladus orbilander mission concept: balancing return and resources in the search for life. Planet. Sci. J. 2, 77 (2021).

    Google Scholar 

  42. Rodgers, C. D. Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000); https://doi.org/10.1142/3171

  43. Mastrapa, R. M. et al. Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm. Icarus 197, 307–320 (2008).

    ADS  Google Scholar 

  44. Mastrapa, R. M., Sandford, S. A., Roush, T. L., Cruikshank, D. P. & Ore, C. M. D. Optical constants of amorphous and crystalline H2O-ice: 2.5–22 μm (4000–455 cm−1). Astrophys. J. 701, 1347 (2009).

    ADS  Google Scholar 

  45. Leto, G., Gomis, O. & Strazzulla, G. The reflectance spectrum of water ice: is the 1.65 mu msp peak a good temperature probe? Mem. della Soc. Astronomica Ital. Suppl. 6, 57 (2005).

    ADS  Google Scholar 

  46. Strazzulla, G. Cosmic ion bombardment of the icy moons of Jupiter. Nucl. Instrum. Methods Phys. Res., Sect. B 269, 842–851 (2011).

    ADS  Google Scholar 

  47. Bennett, C. J., Pirim, C. & Orlando, T. M. Space-weathering of Solar System bodies: a laboratory perspective. Chem. Rev. 113, 9086–9150 (2013).

    Google Scholar 

  48. Roussos, E. et al. Discovery of a transient radiation belt at Saturn. Geophys. Res. Lett. 35, L22106 (2008).

    ADS  Google Scholar 

  49. Kollmann, P. et al. Spectra of Saturn’s proton belts revealed. Icarus 376, 114795 (2022).

    Google Scholar 

  50. Southworth, B. S., Kempf, S. & Spitale, J. Surface deposition of the Enceladus plume and the zenith angle of emissions. Icarus 319, 33–42 (2019).

    ADS  Google Scholar 

  51. Moore, M. H. & Hudson, R. L. IR detection of H2O2 at 80 K in ion-irradiated laboratory ices relevant to Europa. Icarus 145, 282–288 (2000).

    ADS  Google Scholar 

  52. Gomis, O., Satorre, M. A., Strazzulla, G. & Leto, G. Hydrogen peroxide formation by ion implantation in water ice and its relevance to the Galilean satellites. Planet. Space Sci. 52, 371–378 (2004).

    ADS  Google Scholar 

  53. Loeffler, M. J., Raut, U., Vidal, R. A., Baragiola, R. A. & Carlson, R. W. Synthesis of hydrogen peroxide in water ice by ion irradiation. Icarus 180, 265–273 (2006).

    ADS  Google Scholar 

  54. Carlson, R. W. et al. Hydrogen peroxide on the surface of Europa. Science 283, 2062–2064 (1999).

    ADS  Google Scholar 

  55. Trumbo, S. K., Brown, M. E. & Hand, K. P. H2O2 within chaos terrain on Europa’s leading hemisphere. Astron. J. 158, 127 (2019).

    ADS  Google Scholar 

  56. Hendrix, A. R., Barth, C. A., Stewart, A. I. F., Hord, C. W. & Lane, A. L. Hydrogen Peroxide on the Icy Galilean Satellites (Lunar and Planetary Insitute, 1999); https://www.lpi.usra.edu/meetings/LPSC99/pdf/2043.pdf

  57. Accolla, M. et al. Combined IR and XPS characterization of organic refractory residues obtained by ion irradiation of simple icy mixtures. Astron. Astrophys. 620, A123 (2018).

    Google Scholar 

  58. Baratta, G. A. et al. Organic samples produced by ion bombardment of ices for the EXPOSE-R2 mission on the International Space Station. Planet. Space Sci. 118, 211–220 (2015).

    ADS  Google Scholar 

  59. McCord, T. B. et al. Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278, 271–275 (1997).

    ADS  Google Scholar 

  60. Caswell, T. A. et al. matplotlib/matplotlib v.3.1.3. Zenodo https://doi.org/10.5281/zenodo.3633844 (2020).

Download references

Acknowledgements

This work was supported by NASA’s Goddard Astrobiology Program, Goddard’s Fundamental Laboratory Research (FLaRe) and the Sellers Exoplanet Environments Collaboration (SEEC). It is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme no. 1250. C.R.G. was supported by Southwest Research Institute Internal Research & Development grant 15-R6248 and NASA Astrobiology Institute grant NNN13D485T. K.P.H. acknowledges support from the NASA Astrobiology Program (award no. 80NSSC19K1427) and the Europa Lander Pre-Project, managed by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

Author information

Authors and Affiliations

Authors

Contributions

G.L.V., H.B.H., S.N.M., K.P.H., L.P., J. Spencer, J. Stansberry and G.S. designed the observations and prepared the observational plans. G.L.V., V.K., S.F., R.C., J. Stansberry, B.H., S.P., G.L., M.H. and K.D. analysed the data, extracted calibrated spectra, produced maps and performed retrievals. C.R.G., L.R., N.R.-G., G.C.-M. and M.E.M. assisted with the interpretation of the results and provided context to related mission and astronomical investigations. All of the authors contributed to the preparation, writing and editing of the manuscript.

Corresponding author

Correspondence to G. L. Villanueva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Sascha Kempf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Searches for organic species in the plume of Enceladus.

Residual spectra for three spectral regions in which CH3OH, C2H6, CH4, CO2 and CO molecular emission were searched. The spectra were integrated across the plume region. The models are at the 3s level in number of molecules and were computed assuming a rotational temperature of 25 K as for water.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva, G.L., Hammel, H.B., Milam, S.N. et al. JWST molecular mapping and characterization of Enceladus’ water plume feeding its torus. Nat Astron 7, 1056–1062 (2023). https://doi.org/10.1038/s41550-023-02009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02009-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing