Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cell differentiation by 3′,5′-cyclic AMP in a lower plant

An Erratum to this article was published on 18 March 1976

Abstract

CYCLIC AMP evokes or mediates a multitude of responses in animals and microorganisms1,2. Whereas the occurrence and regulatory role of cyclic AMP in these organisms is well established, little is known about its role in plants. Cyclic AMP has been reported to mimic certain effects of gibberellins, indoleacetic acid (IAA) and phytochrome in higher plants but in no case has its endogenous presence been unequivocally demonstrated3,4. We describe here a new response of cyclic AMP at the cellular level in the moss protonema; the results show that it is involved in the differentiation of chloronema cells. The intracellular level of cyclic AMP in these cells is four- to sevenfold higher as compared with that in caulonema cells. In a leaky chloronema-repressed mutant isolated by us, cyclic AMP is shown to enhance the differentiation of chloronema filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robison, G. A., Butcher, R. W., and Sutherland, E. W., Cyclic AMP (Academic. New York, 1971).

    Google Scholar 

  2. Rickenberg, H. V., A. Rev. Microbiol., 28, 353–369 (1974).

    Article  CAS  Google Scholar 

  3. Lin, P. P.-C., in Advances in Cyclic Nucleotide Research (edit. by Greengard, P., and Robison, G. A.), 4, 439–461 (Raven, New York, 1974).

    Google Scholar 

  4. Amrhein, N., Planta, 118, 241–258 (1974).

    Article  CAS  PubMed  Google Scholar 

  5. Brandes, H., A. Rev. Plant Physiol., 24, 115–128 (1973).

    Article  Google Scholar 

  6. Sironval, C., Bull. Soc. Bot. Belg., 19, 48–78 (1947).

    Google Scholar 

  7. Bopp, M., A. Rev. Plant Physiol., 19, 361–380 (1968).

    Article  Google Scholar 

  8. Hurel-Py, G., C. r. Soc. Biol., 147, 34–36 (1953).

    CAS  Google Scholar 

  9. Bopp, M., and Böhrs, H. L., Planta, 67, 357–374 (1965).

    Article  Google Scholar 

  10. Johri, M. M., in Plant Growth Substances, 1973, 925–933 (Hirokawa, Tokyo, 1974).

    Google Scholar 

  11. Johri, M.M., and Desai, S., Nature new Biol., 245, 223–224 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Davies, G. E., Rose, F. L., and Somerville, A. R., Nature new Biol., 234, 50–51 (1971).

    Article  CAS  PubMed  Google Scholar 

  13. Sattin, A., and Rall, T. W., Molec. Pharmac., 6, 13–23 (1970).

    CAS  Google Scholar 

  14. Birnpaumer, L., Nakahara, T., and Yang, P.-C., J. biol. Chem., 249, 7857–7866 (1974).

    Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem., 193, 265–274 (1951).

    CAS  PubMed  Google Scholar 

  16. Kuo, J. F., and Greengard, P., in Advances in Cyclic Nucleotide Research (edit. by Greengard, P. and Robison, G. A.), 2, 41–50 (Raven, New York, 1972).

    Google Scholar 

  17. Hurel-Py, G., C. r. hebd. Séanc. Acad. Sci. Paris, 227, 1256–1258 (1948).

    CAS  Google Scholar 

  18. Szweykowska, A., Acta Soc. Bot. Pol., 31, 553–557 (1962).

    Article  CAS  Google Scholar 

  19. Konijn, T. M., Berkley, D. S., Chang, Y. Y., and Bonner, J. T., Am. Nat., 102, 225–233 (1968).

    Article  CAS  Google Scholar 

  20. Scott, W. A., Mishra, N. C., and Taum, E. L., in Basic Mechanisms in Plant Morphogenesis, 1–18 (Brookhaven National Laboratory, Upton, New York, 1974).

    Google Scholar 

  21. Uno, I., Yamaguchi, M., and Ishikawa, T., Proc. natn. Acad. Sci. U.S.A., 71, 479–483 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Silverman, P. M., and Epstein, P. M., Proc. natn. Acad. Sci. U.S.A., 72, 442–446 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Amrhein, N., and Filner, P., Proc. natn. Acad. Sci. U.S.A., 70, 1099–1103 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HANDA, A., JOHRI, M. Cell differentiation by 3′,5′-cyclic AMP in a lower plant. Nature 259, 480–482 (1976). https://doi.org/10.1038/259480a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259480a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing