Articles

Filter By:

Article Type
  • Biomedical publications provide a rich and largely untapped source of knowledge. INtERAcT exploits word embeddings trained on a corpus of cancer-specific articles to estimate molecular interactions. The algorithm is able to reconstruct molecular pathways associated with ten cancer types, even in corpora of limited size.

    • Matteo Manica
    • Roland Mathis
    • María Rodríguez Martínez
    Article
  • Present day quantum technologies enable computations with tens and soon hundreds of qubits. A major outstanding challenge is to measure and benchmark the complete quantum state, a task that grows exponentially with the system size. Generative models based on restricted Boltzmann machines and recurrent neural networks can be employed to solve this quantum tomography problem in a scalable manner.

    • Juan Carrasquilla
    • Giacomo Torlai
    • Leandro Aolita
    Article
  • To perform complex tasks, robots need to learn the relationship between their bodies and dynamic environments. A biologically plausible approach to hardware and software design shows that a robotic tendon-driven limb can make effective movements based on a short period of learning.

    • Ali Marjaninejad
    • Darío Urbina-Meléndez
    • Francisco J. Valero-Cuevas
    Article
  • Generative machine learning models are used in synthetic biology to find new structures such as DNA sequences, proteins and other macromolecules with applications in drug discovery, environmental treatment and manufacturing. Gupta and Zou propose and demonstrate in silico a feedback-loop architecture to optimize the output of a generative adversarial network that generates synthetic genes to produce ones specifically coding for antimicrobial peptides.

    • Anvita Gupta
    • James Zou
    Article
  • A fully convolutional neural network is used to create time-resolved three-dimensional dense segmentations of heart images. This dense motion model forms the input to a supervised system called 4Dsurvival that can efficiently predict human survival.

    • Ghalib A. Bello
    • Timothy J. W. Dawes
    • Declan P. O’Regan
    Article
  • Neuromorphic processors promise to be a low-powered platform for deep learning, but require neural networks that are adapted for binary communication. The Whetstone method achieves this by gradually sharpening activation functions during the training process.

    • William Severa
    • Craig M. Vineyard
    • James B. Aimone
    Article
  • Deep neural networks are increasingly popular in data-intensive applications, but are power-hungry. New types of computer chips that are suited to the task of deep learning, such as memristor arrays where data handling and computing take place within the same unit, are required. A well-used deep learning model called long short-term memory, which can handle temporal sequential data analysis, is now implemented in a memristor crossbar array, promising an energy-efficient and low-footprint deep learning platform.

    • Can Li
    • Zhongrui Wang
    • Qiangfei Xia
    Article
  • Not all mathematical questions can be resolved, according to Gödel’s famous incompleteness theorems. It turns out that machine learning can be vulnerable to undecidability too, as is illustrated with an example problem where learnability cannot be proved nor refuted.

    • Shai Ben-David
    • Pavel Hrubeš
    • Amir Yehudayoff
    Article
  • Most machine learning approaches extract statistical features from data, rather than the underlying causal mechanisms. A different approach analyses information in a general way by extracting recursive patterns from data using generative models under the paradigm of computability and algorithmic information theory.

    • Hector Zenil
    • Narsis A. Kiani
    • Jesper Tegnér
    Article