Comment

Filter By:

Article Type
  • Photocatalytic hydrogen peroxide formation is an advancing field with various approaches motivated by the promise of a green oxidant and energy carrier for a sustainable future. An assessment on quantification methods, sacrificial agents and best practices is provided to avoid false positives and support progress in the field.

    • T. Freese
    • J. T. Meijer
    • S. B. Beil
    Comment
  • Data science and machine learning have the potential to accelerate the discovery of effective catalysts; however, these approaches are currently held back by the issue of negative results. This Comment highlights the value of negative data by assessing the bottlenecks in data-driven catalysis research and presents a vision for a way forwards.

    • Toshiaki Taniike
    • Keisuke Takahashi
    Comment
  • The discovery of robust and efficient water oxidation catalysts based on first-row transition metal complexes is still a challenge. Here, we describe the underlying chemistry related to the deactivation pathways of first-row transition metal complexes and put forward a series of principles and basic checks to enable the development of robust catalysts.

    • Marcos Gil-Sepulcre
    • Antoni Llobet
    Comment
  • Metrics are a useful way to assess biocatalyst performance and, when compared to techno-economic targets, can help set goals for further enzyme and bioprocess research and development. Here, we outline some of the remaining challenges to ensure wider acceptance of this approach, both in industry and in academia.

    • Murray P. Meissner
    • John M. Woodley
    Comment
  • Electrocatalytic conversion of CO2 into useful products can contribute to the Paris goals on the basis of abundant low-carbon power and technological advances. From R&D to policy, areas are highlighted in which coordinated efforts can support commercialization of such capture and catalytic technologies while deploying the required infrastructure.

    • Sarah M. Jordaan
    • Chao Wang
    Comment
  • Identifying the active sites in supported catalysts comprising isolated metal atoms and subnanometric clusters is challenging because of the difficulty in obtaining detailed structural information under reaction conditions. Here, we discuss the limitations and pitfalls that may be encountered and provide suggestions accordingly.

    • Lichen Liu
    • Avelino Corma
    Comment
  • This Comment articulates simple metrics that can guide early catalysis research to make the manufacture of fuels and chemicals sustainable and affordable. These metrics cover resource efficiency (waste/CO2 production, selectivity) as well as conversion performances that look at different aspects of the process.

    • Jean-Paul Lange
    Comment
  • The Fischer–Tropsch product, water, is regularly hypothesized to be the driving force for catalyst deactivation. Cobalt nanoparticles may be oxidized to CoO, form mixed-metal oxides with supports, or sinter to larger particles. This Comment discusses the feasibility of these deactivation pathways, highlighting the importance of in situ characterization.

    • Moritz Wolf
    • Nico Fischer
    • Michael Claeys
    Comment
  • Considerable research achievements were made to address the plastic crisis using biotechnology, but this is still limited to polyesters. This Comment aims to clarify important aspects related to myths and realities about plastic biodegradation and suggests distinct strategies for a bio-based circular plastic economy in the future.

    • Ren Wei
    • Till Tiso
    • Uwe T. Bornscheuer
    Comment
  • Two different types of H2O2 selectivity are reported for the electrochemical synthesis of H2O2: molar fraction selectivity and Faradaic selectivity. Here we revisit their definitions and discuss the best way to report H2O2 selectivity, which can help to avoid misunderstandings or unfair performance comparisons in this growing field.

    • Chuan Xia
    • Jung Yoon (Timothy) Kim
    • Haotian Wang
    Comment
  • Humankind faces many challenges to continue social and technological development in a sustainable manner. This Comment elaborates how increasing the synthetic capacity of biocatalytic systems can contribute to the United Nations Sustainable Development Goals.

    • Kristala L. J. Prather
    Comment
  • Catalysis is essential in the automotive and transportation sectors to target the United Nations sustainable development goals for climate change and the environment. To comply with both the ambitious United Nations goals and step-by-step stringent emission regulations, innovative and economically viable catalytic systems will be a key element in meeting these challenges.

    • Aiyong Wang
    • Louise Olsson
    Comment
  • For the foreseeable future, we will continue to rely on the internal combustion engine for mobility of people and goods. The ubiquitous three-way catalyst does not work below 350 °C, with appreciable O2, nor does it control soot. Low temperature catalysis, chemical trapping and filtration will grow in need, and represent research opportunities.

    • Christine K. Lambert
    Comment
  • Radical intermediates are key species in many chemical transformations. Recent advances have provided a new suite of selective radical alkylation reactions. This Comment highlights pioneering studies using alkyl amines that act as radical precursors in a number of catalytic processes by their conversion to alkylpyridinium salts.

    • Duanyang Kong
    • Patrick J. Moon
    • Rylan J. Lundgren
    Comment
  • Developing catalytic reactions for organic synthesis is the central goal of countless research groups worldwide. High-throughput experimentation is invaluable for this pursuit, with the requisite tools becoming increasingly available to both industrial and academic research labs.

    • C. Liana Allen
    • David C. Leitch
    • Matthew A. Zajac
    Comment