Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Current state of the art and future needs for automotive exhaust catalysis

For the foreseeable future, we will continue to rely on the internal combustion engine for mobility of people and goods. The ubiquitous three-way catalyst does not work below 350 °C, with appreciable O2, nor does it control soot. Low temperature catalysis, chemical trapping and filtration will grow in need, and represent research opportunities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of ceramic honeycomb monoliths for exhaust gas catalysis and filtration.
Fig. 2: Examples of catalytic washcoats applied to ceramic monoliths.
Fig. 3: Flowpath of gas through a wall flow porous ceramic filter for collection of exhaust soot.
Fig. 4: Examples of gasoline and diesel exhaust systems.

References

  1. Kummer, J. T. Mater. Sci. Eng. 25, 19–22 (1976).

    Article  CAS  Google Scholar 

  2. Kummer, J. T. Prog. Energy Combust. Sci. 6, 177–199 (1980).

    Article  CAS  Google Scholar 

  3. United States Heavy Duty Onroad Engines (Diesel Net, 2017); https://www.dieselnet.com/standards/us/hd.php#life

  4. The Plain English guide to the Clean Air Act (US Environmental Protection Agency, 2007); https://www.epa.gov/sites/production/files/2015-08/documents/peg.pdf

  5. Lambert, C. K. et al. Post Mortem of an Aged Tier 2 Light-Duty Diesel Truck Aftertreatment System (Society of Automotive Engineers, 2009).

  6. Lambert, C. K. et al. Analysis of High Mileage Gasoline Exhaust Particle Filters (Society of Automotive Engineers, 2016).

  7. Cooper, B. J., Jung, J. & Thoss, J. E. US Patent 4,902,487 (1990).

  8. Dettling, J. C. & Skomoroski, R. US Patent 5,100,632 (1992).

  9. Tao, T., Cutler, W. A., Voss, K. & Wei, Q. New Catalyzed Cordierite Diesel Particulate Filters for Heavy-Duty Engine Applications (Society of Automotive Engineers, 2003).

  10. Allansson, R. et al. The Development and In-Field Performance of Highly Durable Particulate Control Systems (Society of Automotive Engineers, 2004).

  11. Takahashi, A., Noda, N., Miyairi, Y. & Yamada, T. US Patent 7,887,761 (2011).

  12. Arnold, M., Siemund, S., Siani, A. & Wassermann, K. US Patent 8,815,189 (2014).

  13. Morgan, C. G. US Patent 9,327,239 (2016).

  14. Richter, J. M, Klingmann, R., Spiess, S. & Wong, K. -F. Application of Catalyzed Gasoline Particulate Filters to GDI Vehicles (Society of Automotive Engineers, 2012).

  15. Tanaka, A., Miyoshi, N. & Sato, A. Development of Low Pressure and High Performance GPF Catalyst (Society of Automotive Engineers, 2018).

  16. Maricq, M. M., Szente, J. J., Harwell, A. L. & Loos, M. J. J. Aerosol Sci. 113, 1–11 (2017).

    Article  CAS  Google Scholar 

  17. US DRIVE Low temperature protocols. Cross-cut lean exhaust emissions reduction simulations https://cleers.org/low-temperature-protocols/ (2019).

  18. Future Automotive Aftertreatment Solutions: The 150˚C Challenge Workshop Report (US Department of Energy, 2003); https://cleers.org/wp-content/uploads/2012_The_150C_Challenge_Workshop_Report.pdf, last accessed on Jan 3, 2019.

  19. Theis, J. R., Getsoian, A. & Lambert, C. K. The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future: Part II (Society of Automotive Engineers, 2018).

  20. Getsoian, A., Theis, J. R, Paxton, W. A., Lance, M. J. & Lambert, C. K. Nat. Catal. https://doi.org/10.1038/s41929-019-0283-x (2019).

  21. Annual merit review presentations. US Department of Energy https://www.energy.gov/eere/vehicles/annual-merit-review-presentations (2017).

  22. Ryou, Y. S., Lee, J., Lee, H., Kim, C. H. & Kim, D. H. Catal. Today 297, 53–59 (2017).

    Article  CAS  Google Scholar 

  23. Rajaram, R. R, Chen, H. -Y., Liu, D. US Patent Application 0158023 (2015).

  24. Zheng, Y. et al. J. Phys. Chem. C. 121, 15793–15803 (2017).

    Article  CAS  Google Scholar 

  25. Ryou, Y. S. et al. Appl. Catal. B 212, 140–149 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine K. Lambert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, C.K. Current state of the art and future needs for automotive exhaust catalysis. Nat Catal 2, 554–557 (2019). https://doi.org/10.1038/s41929-019-0303-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0303-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing