Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Brain somatic mutations: the dark matter of psychiatric genetics?

Abstract

Although inherited DNA sequences have a well-demonstrated role in psychiatric disease risk, for even the most heritable mental disorders, monozygotic twins are discordant at a significant rate. The genetic variation associated with mental disorders has heretofore been based on the search for rare or common variation in blood cells. This search is based on the premise that every somatic cell shares an identical DNA sequence, so that variation found in lymphocytes should reflect variation present in brain cells. Evidence from the study of cancer cells, stem cells and now neurons demonstrate that this premise is false. Somatic mutation is common in human cells and has been implicated in a range of diseases beyond cancer. The exuberant proliferation of cortical precursors during fetal development provides a likely environment for somatic mutation in neuronal and glial lineages. Studies of rare neurodevelopmental disorders, such as hemimegencephaly, demonstrate somatic mutations in affected cortical cells that cannot be detected in unaffected parts of the brain or in peripheral cells. This perspective argues for the need to investigate somatic variation in the brain as an explanation of the discordance in monozygotic twins, a proximate cause of mental disorders in individuals with inherited risk, and a potential guide to novel treatment targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489: 391–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011; 478: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gregg C, Zhang J, Butler JE, Haig D, Dulac C . Sex-specific parent-of-origin allelic expression in the mouse brain. Science 2010; 329: 682–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gabel HW, Greenberg ME . Genetics. The maturing brain methylome. Science 2013; 341: 626–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND et al. Global epigenomic reconfiguration during mammalian brain development. Science 2013; 341: 1237905.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH . Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 2005; 435: 903–910.

    Article  CAS  PubMed  Google Scholar 

  7. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 2011; 479: 534–537, [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 2012; 151: 483–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    Article  CAS  PubMed  Google Scholar 

  10. Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 2012; 492: 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Huallachain M, Karczewski KJ, Weissman SM, Urban AE, Snyder MP . Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci USA 2012; 109: 18018–18023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poduri A, Evrony GD, Cai X, Walsh CA . Somatic mutation, genomic variation, and neurological disease. Science 2013; 341: 1237758.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Poduri A et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 2012; 74: 41–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu TW, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK et al. Using whole-exome sequencing to identify inherited causes of autism. Neuron 2013; 77: 259–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ et al. Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 2001; 69: 493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia-Linares C, Fernández-Rodríguez J, Terribas E, Mercadé J, Pros E, Benito L et al. Dissecting loss of heterozygosity (LOH) in neurofibromatosis type 1-associated neurofibromas: Importance of copy neutral LOH. Hum Mut 2011; 32: 78–90.

    Article  CAS  PubMed  Google Scholar 

  17. Knudson AG Jr . Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–823.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC . Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 1992; 2: 324–329.

    Article  CAS  PubMed  Google Scholar 

  19. Yurov YB, Iourov IY, Vorsanova SG, Demidova IA, Kravetz VS, Beresheva AK et al. The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 2008; 98: 139–147.

    Article  PubMed  Google Scholar 

  20. Yurov YB, Vostrikov VM, Vorsanova SG, Monakhov VV, Iourov IY . Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev 2001; 23 (Suppl 1): S186–S190.

    Article  PubMed  Google Scholar 

  21. Iourov IY, Vorsanova SG, Yurov YB . Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 2012; 13: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Network, C. G. A. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  23. Ciceri G, Dehorter N, Sols I, Huang ZJ, Maravall M, Marín O . Lineage-specific laminar organization of cortical GABAergic interneurons. Nat Neurosci 2013; 16: 1199–1210.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Andrea Beckel-Michener, Thomas Lehner, Francis McMahon, David Panchision and Nenad Sestan for helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T R Insel.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Additional information

Note added to the proof

Since the acceptance of this commentary, the first single-cell analysis of endogenous human frontal cortex neurons was published, revealing that 13–41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations (McConnell MJ, Lindberg MR, Brennan KJ, Piper JC, Voet T, Cowing-Zitron C et al. Mosaic copy number variation in human neurons. Science 2013; 342: 632–637).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insel, T. Brain somatic mutations: the dark matter of psychiatric genetics?. Mol Psychiatry 19, 156–158 (2014). https://doi.org/10.1038/mp.2013.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.168

Keywords

This article is cited by

Search

Quick links