Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A review of new agents evaluated against pediatric acute lymphoblastic leukemia by the Pediatric Preclinical Testing Program

Abstract

Acute lymphoblastic leukemia (ALL) in children exemplifies how multi-agent chemotherapy has improved the outcome for patients. Refinements in treatment protocols and improvements in supportive care for this most common pediatric malignancy have led to a cure rate that now approaches 90%. However, certain pediatric ALL subgroups remain relatively intractable to treatment and many patients who relapse face a similarly dismal outcome. Moreover, survivors of pediatric ALL suffer the long-term sequelae of their intensive treatment throughout their lives. Therefore, the development of drugs to treat relapsed/refractory pediatric ALL, as well as those that more specifically target leukemia cells, remains a high priority. As pediatric malignancies represent a minority of the overall cancer burden, it is not surprising that they are generally underrepresented in drug development efforts. The identification of novel therapies relies largely on the reappropriation of drugs developed for adult malignancies. However, despite the large number of experimental agents available, clinical evaluation of novel drugs for pediatric ALL is hindered by limited patient numbers and the availability of effective established drugs. The Pediatric Preclinical Testing Program (PPTP) was established in 2005 to provide a mechanism by which novel therapeutics could be evaluated against xenograft and cell line models of the most common childhood malignancies, including ALL, to prioritize those with the greatest activity for clinical evaluation. In this article, we review the results of >50 novel agents and combinations tested against the PPTP ALL xenografts, highlighting comparisons between PPTP results and clinical data where possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ries L, Melbert D, Krapcho M, Mariotto A, Miller B, Feuer E et al. SEER Cancer Statistics Review, 1975-2004. Available at: http://seer.cancer.gov/csr/1975_2004/ (accessed 23 November 2015).

  2. Vassal G, Zwaan CM, Ashley D, Le Deley MC, Hargrave D, Blanc P et al. New drugs for children and adolescents with cancer: the need for novel development pathways. Lancet Oncol 2013; 14: e117–e124.

    Article  PubMed  Google Scholar 

  3. Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D Cancer Incidence and Mortality Worldwide: GLOBOCAN 2008. Available at: http://globocan.iarc.fr (accessed 23 November 2015).

  4. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . Cancer statistics, 2009. CA Cancer J Clin 2009; 59: 225–249.

    Article  PubMed  Google Scholar 

  5. Smith MA, Altekruse SF, Adamson PC, Reaman GH, Seibel NL . Declining childhood and adolescent cancer mortality. Cancer 2014; 120: 2497–2506.

    Article  PubMed  Google Scholar 

  6. Pui C-H . Recent research advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc 2010; 109: 777–787.

    Article  PubMed  Google Scholar 

  7. Hirschfeld S, Ho PT, Smith M, Pazdur R . Regulatory approvals of pediatric oncology drugs: previous experience and new initiatives. J Clin Oncol 2003; 21: 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  8. Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010; 28: 648–654.

    Article  PubMed  Google Scholar 

  9. Pui C-H, Gajjar AJ, Kane JR, Qaddoumi IA, Pappo AS . Challenging issues in pediatric oncology. Nat Rev Clin Oncol 2011; 8: 540–549.

    Article  PubMed  PubMed Central  Google Scholar 

  10. National Cancer Institute. Cancer Trends Progress Report 6—2011/2012 Update. Available at: http://progressreport.cancer.gov (accessed 23 November 2015).

  11. Houghton PJ, Adamson PC, Blaney S, Fine HA, Gorlick R, Haber M et al. Testing of new agents in childhood cancer preclinical models: meeting summary. Clin Cancer Res 2002; 8: 3646–3657.

    PubMed  Google Scholar 

  12. Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 2007; 49: 928–940.

    Article  PubMed  Google Scholar 

  13. Hutchinson L, Kirk R . High drug attrition rates—where are we going wrong? Nat Rev Clin Oncol 2011; 8: 189–190.

    Article  PubMed  Google Scholar 

  14. Houghton PJ . New insights into drug development for pediatric solid tumors: what preclinical data justify clinical trials in pediatric cancer? Expert Rev Anticancer Ther 2013; 13: 1135–1138.

    Article  CAS  PubMed  Google Scholar 

  15. Peterson JK, Houghton PJ . Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 2004; 40: 837–844.

    Article  CAS  PubMed  Google Scholar 

  16. Carol H, Boehm I, Reynolds CP, Kang M, Maris J, Morton C et al. Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemother Pharmacol 2011; 68: 1291–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong H, Alicke B, West KA, Pacheco P, La H, Januario T et al. Pharmacokinetic-pharmacodynamic analysis of vismodegib in preclinical models of mutational and ligand-dependent Hedgehog pathway activation. Clin Cancer Res 2011; 17: 4682–4692.

    Article  CAS  PubMed  Google Scholar 

  18. Szymanska B, Wilczynska-Kalak U, Kang MH, Liem NLM, Carol H, Boehm I et al. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts. PLoS One 2012; 7: e33894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keir ST, Maris JM, Reynolds CP, Kang MH, Kolb EA, Gorlick R et al. Initial testing (Stage 1) of temozolomide by the pediatric preclinical testing program. Pediatr Blood Cancer 2013; 60: 783–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suryani S, Carol H, Chonghaile TN, Frismantas V, Sarmah C, High L et al. Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts. Clin Cancer Res 2014; 20: 4520–4531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Szymanska B, Carol H, Lock RB. Preclinical evaluation. In: Saha V, Kearns P (eds). New Agents for the Treatment of Acute Lymphoblastic Leukemia. Springer: NY, USA, 2011, pp 39–60..

  22. Liem NLM, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 2004; 103: 3905–3914.

    Article  CAS  PubMed  Google Scholar 

  23. Carol H, Reynolds CP, Kang MH, Keir ST, Maris JM, Gorlick R et al. Initial testing of the MDM2 inhibitor RG7112 by the pediatric preclinical testing program. Pediatr Blood Cancer 2013; 60: 633–641.

    Article  CAS  PubMed  Google Scholar 

  24. Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB et al. Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 2008; 14: 4572–4583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Whiteford CC, Bilke S, Greer BT, Chen Q, Braunschweig TA, Cenacchi N et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 2007; 67: 32–40.

    Article  CAS  PubMed  Google Scholar 

  26. Carol H, Houghton PJ, Morton CL, Kolb EA, Gorlick R, Reynolds CP et al. Initial testing of topotecan by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 54: 707–715.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Daw NC, Santana VM, Iacono LC, Furman WL, Hawkins DR, Houghton PJ et al. Phase I and pharmacokinetic study of topotecan administered orally once daily for 5 days for 2 consecutive weeks to pediatric patients with refractory solid tumors. J Clin Oncol 2004; 22: 829–837.

    Article  CAS  PubMed  Google Scholar 

  28. Furman WL, Stewart CF, Kirstein M, Kepner JL, Bernstein ML, Kung F et al. Protracted intermittent schedule of topotecan in children with refractory acute leukemia: a pediatric oncology group study. J Clin Oncol 2002; 20: 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  29. Tajbakhsh M, Houghton PJ, Morton CL, Kolb EA, Gorlick R, Maris JM et al. Initial testing of cisplatin by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 992–1000.

    Article  PubMed  Google Scholar 

  30. Vietti T, Nitschke R, Starling K, van Eys J . Evaluation of cis-dichlorodiammineplatinum(II) in children with advanced malignant diseases: Southwest Oncology Group Studies. Cancer Treat Rep 1979; 63: 1611–1614.

    CAS  PubMed  Google Scholar 

  31. Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock RB, Tajbakhsh M et al. Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 1198–1206.

    Article  PubMed  Google Scholar 

  32. Batra V, Maris JM, Kang MH, Reynolds CP, Houghton PJ, Alexander D et al. Initial testing (Stage 1) of SGI-1776, a PIM1 kinase inhibitor, by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 59: 749–752.

    Article  PubMed  Google Scholar 

  33. Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H et al. Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS One 2011; 6: e23108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carol H, Fan MM, Harasym TO, Boehm I, Mayer LD, Houghton P et al. Efficacy of CPX-351, (cytarabine:daunorubicin) liposome injection, against acute lymphoblastic leukemia (ALL) xenograft models of the pediatric preclinical testing program. Pediatr Blood Cancer 2015; 62: 65–71.

    Article  CAS  PubMed  Google Scholar 

  35. Carol H, Lock R, Houghton PJ, Morton CL, Kolb EA, Gorlick R et al. Initial testing (Stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatr Blood Cancer 2009; 53: 1255–1263.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Carol H, Maris JM, Kang MH, Reynolds CP, Kolb EA, Gorlick R et al. Initial testing (Stage 1) of the notch inhibitor PF-03084014, by the pediatric preclinical testing program. Pediatr Blood Cancer 2014; 61: 1493–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carol H, Morton CL, Gorlick R, Kolb EA, Keir ST, Reynolds CP et al. Initial testing (Stage 1) of the Akt inhibitor GSK690693 by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 55: 1329–1337.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Houghton PJ, Kang MH, Reynolds CP, Morton CL, Kolb EA, Gorlick R et al. Initial testing (Stage 1) of LCL161, a SMAC mimetic, by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58: 636–639.

    Article  PubMed  Google Scholar 

  39. Gorlick R, Kolb EA, Houghton PJ, Morton CL, Phelps D, Schaiquevich P et al. Initial testing (Stage 1) of lapatinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2009; 53: 594–598.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gorlick R, Kolb EA, Keir ST, Maris JM, Reynolds CP, Kang MH et al. Initial testing (Stage 1) of the Polo-like kinase inhibitor volasertib (BI 6727), by the pediatric preclinical testing program. Pediatr Blood Cancer 2014; 61: 158–164.

    Article  CAS  PubMed  Google Scholar 

  41. Kang MH, Reynolds CP, Houghton PJ, Alexander D, Morton CL, Kolb EA et al. Initial testing (Stage 1) of AT13387, an HSP90 inhibitor, by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 59: 185–188.

    Article  PubMed  Google Scholar 

  42. Houghton PJ, Lock R, Carol H, Morton CL, Gorlick R, Anders Kolb E et al. Testing of the topoisomerase 1 inhibitor Genz-644282 by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58: 200–209.

    Article  PubMed  Google Scholar 

  43. Houghton PJ, Morton CL, Gorlick R, Lock RB, Carol H, Reynolds CP et al. Stage 2 combination testing of rapamycin with cytotoxic agents by the Pediatric Preclinical Testing Program. Mol Cancer Ther 2010; 9: 101–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Houghton PJ, Morton CL, Kolb EA, Gorlick R, Lock R, Carol H et al. Initial testing (Stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 799–805.

    Article  PubMed  Google Scholar 

  45. Houghton PJ, Morton CL, Kolb EA, Lock R, Carol H, Reynolds CP et al. Initial testing (Stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 37–45.

    Article  PubMed  Google Scholar 

  46. Kang MH, Reynolds CP, Maris JM, Gorlick R, Kolb EA, Lock R et al. Initial testing (Stage 1) of the investigational mTOR kinase inhibitor MLN0128 by the pediatric preclinical testing program. Pediatr Blood Cancer 2014; 61: 1486–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kolb EA, Gorlick R, Houghton PJ, Morton CL, Neale G, Keir ST et al. Initial testing (Stage 1) of AZD6244 (ARRY-142886) by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 55: 668–677.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Keshelava N, Houghton PJ, Morton CL, Lock RB, Carol H, Keir ST et al. Initial testing (Stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatr Blood Cancer 2009; 53: 505–508.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock R, Carol H et al. Initial testing (Stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 1190–1197.

    Article  PubMed  Google Scholar 

  50. Kolb EA, Gorlick R, Keir ST, Maris JM, Lock R, Carol H et al. Initial testing (Stage 1) by the pediatric preclinical testing program of RO4929097, a gamma-secretase inhibitor targeting notch signaling. Pediatr Blood Cancer 2012; 58: 815–818.

    Article  PubMed  Google Scholar 

  51. Kolb EA, Gorlick R, Lock R, Carol H, Morton CL, Keir ST et al. Initial testing (Stage 1) of the IGF-1 receptor inhibitor BMS-754807 by the pediatric preclinical testing program. Pediatr Blood Cancer 2011; 56: 595–603.

    Article  PubMed  Google Scholar 

  52. Lock RB, Carol H, Maris JM, Kang MH, Reynolds CP, Kolb EA et al. Initial testing (Stage 1) of ganetespib, an Hsp90 inhibitor, by the pediatric preclinical testing program. Pediatr Blood Cancer 2013; 60: E42–E45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lock RB, Carol H, Morton CL, Keir ST, Reynolds CP, Kang MH et al. Initial testing of the CENP-E inhibitor GSK923295A by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58: 916–923.

    Article  PubMed  Google Scholar 

  54. Maris JM, Courtright J, Houghton PJ, Morton CL, Kolb EA, Lock R et al. Initial testing (Stage 1) of sunitinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 51: 42–48.

    Article  PubMed  Google Scholar 

  55. Maris JM, Morton CL, Gorlick R, Kolb EA, Lock R, Carol H et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer 2010; 55: 26–34.

    PubMed  PubMed Central  Google Scholar 

  56. Morton CL, Houghton PJ, Gorlick R, Kolb EA, Lock R, Carol H et al. Initial testing of aplidin by the pediatric pre-clinical testing program. Pediatr Blood Cancer 2009; 53: 509–512.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reynolds CP, Kang MH, Carol H, Lock R, Gorlick R, Kolb EA et al. Initial testing (Stage 1) of the phosphatidylinositol 3' kinase inhibitor, SAR245408 (XL147) by the pediatric preclinical testing program. Pediatr Blood Cancer 2013; 60: 791–798.

    Article  CAS  PubMed  Google Scholar 

  58. Reynolds CP, Kang MH, Keir ST, Gorlick R, Kolb EA, Lock R et al. Initial testing of lenalidomide by the pediatric preclinical testing program. Pediatr Blood Cancer 2011; 57: 606–611.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Smith MA, Gorlick R, Kolb EA, Lock R, Carol H, Maris JM et al. Initial testing of JNJ-26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 59: 329–332.

    Article  PubMed  Google Scholar 

  60. Smith MA, Hampton OA, Reynolds CP, Kang MH, Maris JM, Gorlick R et al. Initial testing (Stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program: PALB2 mutation predicts exceptional in vivo response to BMN 673. Pediatr Blood Cancer 2015; 62: 91–98.

    Article  CAS  PubMed  Google Scholar 

  61. Smith MA, Maris JM, Gorlick R, Kolb EA, Lock R, Carol H et al. Initial testing of the investigational NEDD8-activating enzyme inhibitor MLN4924 by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 59: 246–253.

    Article  PubMed  Google Scholar 

  62. Smith MA, Maris JM, Lock R, Kolb EA, Gorlick R, Keir ST et al. Initial testing (Stage 1) of the polyamine analog PG11047 by the pediatric preclinical testing program. Pediatr Blood Cancer 2011; 57: 268–274.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Smith MA, Morton CL, Kolb EA, Gorlick R, Keir ST, Carol H et al. Initial testing (Stage 1) of mapatumumab (HGS-ETR1) by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 54: 307–310.

    PubMed  PubMed Central  Google Scholar 

  64. Smith MA, Morton CL, Phelps DA, Kolb EA, Lock R, Carol H et al. Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17-DMAG, KOS-1022) by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 51: 34–41.

    Article  PubMed  Google Scholar 

  65. Carol H, Gorlick R, Kolb EA, Morton CL, Manesh DM, Keir ST et al. Initial testing (Stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the pediatric preclinical testing program. Pediatr Blood Cancer 2014; 61: 245–252.

    Article  PubMed  Google Scholar 

  66. Gorlick R, Kolb EA, Houghton PJ, Morton CL, Neale G, Keir ST et al. Initial testing (Stage 1) of the cyclin dependent kinase inhibitor SCH 727965 (dinaciclib) by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 59: 1266–1274.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Keir ST, Maris JM, Lock R, Kolb EA, Gorlick R, Carol H et al. Initial testing (Stage 1) of the multi-targeted kinase inhibitor sorafenib by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 55: 1126–1133.

    Article  PubMed  Google Scholar 

  68. Houghton PJ, Gorlick R, Kolb EA, Lock R, Carol H, Morton CL et al. Initial testing (Stage 1) of the mTOR kinase inhibitor AZD8055 by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58: 191–199.

    Article  PubMed  Google Scholar 

  69. Gorlick R, Maris JM, Houghton PJ, Lock R, Carol H, Kurmasheva RT et al. Testing of the Akt/PKB inhibitor MK-2206 by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2012; 59: 518–524.

    Article  PubMed  Google Scholar 

  70. Kolb EA, Gorlick R, Reynolds CP, Kang MH, Carol H, Lock R et al. Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatr Blood Cancer 2013; 60: 1325–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Polak R, Buitenhuis M . The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood 2012; 119: 911–923.

    Article  CAS  PubMed  Google Scholar 

  72. Metzelder SK, Schroeder T, Finck A, Scholl S, Fey M, Gotze K et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia 2012; 26: 2353–2359.

    Article  CAS  PubMed  Google Scholar 

  73. Razumovskaya E, Masson K, Khan R, Bengtsson S, Rönnstrand L . Oncogenic Flt3 receptors display different specificity and kinetics of autophosphorylation. Exp Hematol 2009; 37: 979–989.

    Article  CAS  PubMed  Google Scholar 

  74. Kancha RK, Grundler R, Peschel C, Duyster J . Sensitivity toward sorafenib and sunitinib varies between different activating and drug-resistant FLT3-ITD mutations. Exp Hematol 2007; 35: 1522–1526.

    Article  CAS  PubMed  Google Scholar 

  75. Dolai S, Sia KCS, Robbins AK, Zhong L, Heatley SL, Vincent TL et al. Quantitative phosphotyrosine profiling of patient-derived xenografts identifies therapeutic targets in pediatric leukemia. Cancer Res 2016; 76: 2766–2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y-L, Pei D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371: 1005–1015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Suryani S, Bracken LS, Harvey RC, Sia KCS, Carol H, Chen I-M et al. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia. Mol Cancer Ther 2015; 14: 364–374.

    Article  CAS  PubMed  Google Scholar 

  78. Plimack ER, Lorusso PM, McCoon P, Tang W, Krebs AD, Curt G et al. AZD1480: a phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist 2013; 18: 819–820.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ghobrial IM, Witzig TE, Adjei AA . Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005; 55: 178–194.

    Article  PubMed  Google Scholar 

  80. Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2013; 17: 61–75.

    Article  CAS  PubMed  Google Scholar 

  81. Anderson MA, Huang D, Roberts A . Targeting BCL2 for the treatment of lymphoid malignancies. Semin Hematol 2014; 51: 219–227.

    Article  CAS  PubMed  Google Scholar 

  82. Suryani S, Evans K, Richmond J, Robbins A, Bracken L, Kurmasheva R et al. Evaluation of the Bcl-2 inhibitor ABT-199 in xenograft models of acute lymphoblastic leukemia by the pediatric preclinical testing program [abstract]. Cancer Res 2015; 75, Abstract 3276.

    Google Scholar 

  83. Gyrd-Hansen M, Meier P . IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat Rev Cancer 2010; 10: 561–574.

    Article  CAS  PubMed  Google Scholar 

  84. Jamieson SM, Gu Y, Manesh DM, El-Hoss J, Jing D, Mackenzie KL et al. A novel fluorometric assay for aldo-keto reductase 1C3 predicts metabolic activation of the nitrogen mustard prodrug PR-104 A in human leukaemia cells. Biochem Pharmacol 2014; 88: 36–45.

    Article  CAS  PubMed  Google Scholar 

  85. Moradi Manesh D, El-Hoss J, Evans K, Richmond J, Toscan CE, Bracken LS et al. AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood 2015; 126: 1193–1202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Konopleva M, Thall PF, Yi CA, Borthakur G, Coveler A, Bueso-Ramos C et al. Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica 2015; 100: 927–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Béné M-C et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations In Leukemia Study Group. J Clin Oncol 2010; 28: 2529–2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011; 117: 6267–6276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mosse YP, Lipsitz E, Fox E, Teachey DT, Maris JM, Weigel BJ et al. Pediatric phase 1 trial and pharmacokinetic study of MLN8237, an investigational oral selective small molecule inhibitor of Aurora kinase A: a Children's Oncology Group Phase 1 Consortium Study. Clin Cancer Res 2012; 18: 6058–6064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Smith M, Kang M, Reynolds P, Lock R, Carol H, Gorlick R et al. Pediatric preclinical testing program (PPTP) evaluation of the p53-MDM2 antagonist MK-8242. Eur J Cancer 2014; 50: 131.

    Article  Google Scholar 

  91. Richmond J, Carol H, Evans K, High L, Mendomo A, Robbins A et al. Effective targeting of the P53-MDM2 axis in preclinical models of infant MLL-rearranged acute lymphoblastic leukemia. Clin Cancer Res 2015; 21: 1395–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wada M, Bartram C, Nakamura H, Hachiya M, Chen D, Borenstein J et al. Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood 1993; 82: 3163–3169.

    Article  CAS  PubMed  Google Scholar 

  93. Hof J, Krentz S, van Schewick C, Körner G, Shalapour S, Rhein P et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 2011; 29: 3185–3193.

    Article  PubMed  Google Scholar 

  94. Vedi A, Ziegler DS . Antibody therapy for pediatric leukemia. Front Oncol 2014; 4: 82.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Boyiadzis M, Foon KA . Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther 2008; 8: 1151–1158.

    Article  CAS  PubMed  Google Scholar 

  96. Carol H, Szymanska B, Evans K, Boehm I, Houghton PJ, Smith MA et al. The anti-CD19 antibody-drug conjugate SAR3419 prevents hematolymphoid relapse postinduction therapy in preclinical models of pediatric acute lymphoblastic leukemia. Clin Cancer Res 2013; 19: 1795–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Etchin J, Sanda T, Mansour MR, Kentsis A, Montero J, Le BT et al. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol 2013; 161: 117–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Messinger Y, Gaynon P, Raetz E, Hutchinson R, Dubois S, Glade-Bender J et al. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer 2010; 55: 254–259.

    Article  PubMed  Google Scholar 

  99. Messinger YH, Gaynon PS, Sposto R, van der Giessen J, Eckroth E, Malvar J et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood 2012; 120: 285–290.

    Article  CAS  PubMed  Google Scholar 

  100. Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, Saranadasa M et al. Curaxins: anticancer compounds that simultaneously suppress NF-kappaB and activate p53 by targeting FACT. Sci Transl Med 2011; 3: 95ra74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nathan PC, Wasilewski-Masker K, Janzen LA . Long-term outcomes in survivors of childhood acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009; 23: 1065–1082.

    Article  PubMed  Google Scholar 

  102. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371: 1507–1517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Horton TM, Pati D, Plon SE, Thompson PA, Bomgaars LR, Adamson PC et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children's Oncology Group study. Clin Cancer Res 2007; 13: 1516–1522.

    Article  CAS  PubMed  Google Scholar 

  104. Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children's Oncology Group phase I consortium report. J Clin Oncol 2010; 28: 3623–3629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008; 111: 1060–1066.

    Article  CAS  PubMed  Google Scholar 

  106. Blum W, Klisovic RB, Becker H, Yang X, Rozewski DM, Phelps MA et al. Dose escalation of lenalidomide in relapsed or refractory acute leukemias. J Clin Oncol 2010; 28: 4919–4925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gutierrez ME, Kummar S, Giaccone G . Next generation oncology drug development: opportunities and challenges. Nat Rev Clin Oncol 2009; 6: 259–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group study. J Clin Oncol 2009; 27: 5175–5181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Murphy B, Yin H, Maris JM, Kolb AE, Gorlick R, Reynolds PC et al. Analysis of single mouse tumor response results from the pediatric preclinical testing program (PPTP) [abstract]. Cancer Res 2015; 75, Abstract 1617.

    Google Scholar 

Download references

Acknowledgements

This research was funded by grants from the National Cancer Institute (NOI-CM-42216 and NOI-CM-91001-03). We acknowledge the numerous researchers who provided technical assistance and data analysis over the course of this project. Children’s Cancer Institute is affiliated with the University of New South Wales and The Sydney Children’s Hospitals Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R B Lock.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, L., Carol, H., Evans, K. et al. A review of new agents evaluated against pediatric acute lymphoblastic leukemia by the Pediatric Preclinical Testing Program. Leukemia 30, 2133–2141 (2016). https://doi.org/10.1038/leu.2016.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.192

This article is cited by

Search

Quick links