Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL)

Abstract

Natural killer (NK) cells play an important role in the immunosurveillance of hematopoietic malignancies. Their reactivity is influenced by activating and inhibitory signals mediated by tumor-expressed ligands for NK receptors. Many members of the tumor necrosis factor (TNF) family modulate differentiation, proliferation, activation and death of both tumor and immune effector cells. The TNF receptor family member glucocorticoid-induced TNFR-related protein (GITR) stimulates anti-tumor immunity in mice, but available data indicate that GITR may mediate different effects in mice and men and impairs the reactivity of human NK cells. Here, we comprehensively studied the expression and function of GITR ligand (GITRL) in leukemia. Among the different leukemia entities, pronounced expression of GITRL on leukemic cells was observed in chronic lymphocytic leukemia (CLL), and the GITR receptor was expressed at significantly higher levels on NK cells of CLL patients compared with healthy controls. Upon GITR–GITRL interaction, signaling via GITRL into the leukemia cells induced the release of interleukin (IL)-6, IL-8 and TNF, which act as growth and survival factors for CLL cells. In addition, GITRL impaired both direct and Rituximab-induced degranulation, cytotoxicity and interferon-γ production of NK cells, which could be restored by GITR blocking antibodies. Thus, GITRL may contribute to disease pathophysiology and resistance to direct and Rituximab-induced NK reactivity in CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Schreiber RD, Old LJ, Smyth MJ . Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.

    Article  CAS  Google Scholar 

  2. Locksley RM, Killeen N, Lenardo MJ . The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487–501.

    Article  CAS  Google Scholar 

  3. Nocentini G, Riccardi C . GITR: a modulator of immune response and inflammation. Adv Exp Med Biol 2009; 647: 156–173.

    Article  CAS  Google Scholar 

  4. Shevach EM, Stephens GL . The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol 2006; 6: 613–618.

    Article  CAS  Google Scholar 

  5. Placke T, Kopp HG, Salih HR . Glucocorticoid-induced TNFR-related (GITR) protein and its ligand in antitumor immunity: functional role and therapeutic modulation. Clin Dev Immunol 2010; 2010: 239083.

    Article  Google Scholar 

  6. Cote AL, Zhang P, O’Sullivan JA, Jacobs VL, Clemis CR, Sakaguchi S et al. Stimulation of the glucocorticoid-induced TNF receptor family-related receptor on CD8 T cells induces protective and high-avidity T cell responses to tumor-specific antigens. J Immunol 2011; 186: 275–283.

    Article  CAS  Google Scholar 

  7. Calmels B, Paul S, Futin N, Ledoux C, Stoeckel F, Acres B . Bypassing tumor-associated immune suppression with recombinant adenovirus constructs expressing membrane bound or secreted GITR-L. Cancer Gene Ther 2005; 12: 198–205.

    Article  CAS  Google Scholar 

  8. Cho JS, Hsu JV, Morrison SL . Localized expression of GITR-L in the tumor microenvironment promotes CD8+ T cell dependent anti-tumor immunity. Cancer Immunol Immunother 2009; 58: 1057–1069.

    Article  CAS  Google Scholar 

  9. Piao J, Kamimura Y, Iwai H, Cao Y, Kikuchi K, Hashiguchi M et al. Enhancement of T-cell-mediated anti-tumour immunity via the ectopically expressed glucocorticoid-induced tumour necrosis factor receptor-related receptor ligand (GITRL) on tumours. Immunology 2009; 127: 489–499.

    Article  CAS  Google Scholar 

  10. Hu P, Arias RS, Sadun RE, Nien YC, Zhang N, Sabzevari H et al. Construction and preclinical characterization of Fc-mGITRL for the immunotherapy of cancer. Clin Cancer Res 2008; 14: 579–588.

    Article  CAS  Google Scholar 

  11. Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med 2005; 202: 885–891.

    Article  CAS  Google Scholar 

  12. Imai N, Ikeda H, Tawara I, Wang L, Wang L, Nishikawa H et al. Glucocorticoid-induced tumor necrosis factor receptor stimulation enhances the multifunctionality of adoptively transferred tumor antigen-specific CD8+ T cells with tumor regression. Cancer Sci 2009; 100: 1317–1325.

    Article  CAS  Google Scholar 

  13. Ramirez-Montagut T, Chow A, Hirschhorn-Cymerman D, Terwey TH, Kochman AA, Lu S et al. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J Immunol 2006; 176: 6434–6442.

    Article  CAS  Google Scholar 

  14. Zhou P, L’italien L, Hodges D, Schebye XM . Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors. J Immunol 2007; 179: 7365–7375.

    Article  CAS  Google Scholar 

  15. Baltz KM, Krusch M, Bringmann A, Brossart P, Mayer F, Kloss M et al. Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions. FASEB J 2007; 21: 2442–2454.

    Article  CAS  Google Scholar 

  16. Baltz KM, Krusch M, Baessler T, Schmiedel BJ, Bringmann A, Brossart P et al. Neutralization of tumor-derived soluble glucocorticoid-induced TNFR-related protein (GITR) ligand increases NK cell anti-tumor reactivity. Blood 2008; 112: 3735–3743.

    Article  CAS  Google Scholar 

  17. Baessler T, Krusch M, Schmiedel BJ, Kloss M, Baltz KM, Wacker A et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein ligand subverts immunosurveillance of acute myeloid leukemia in humans. Cancer Res 2009; 69: 1037–1045.

    Article  CAS  Google Scholar 

  18. Liu B, Li Z, Mahesh SP, Pantanelli S, Hwang FS, Siu WO et al. GITR negatively regulates activation of primary human NK cells by blocking proliferative signals and increasing NK cell apoptosis. J Biol Chem 2008; 283: 8202–8210.

    Article  CAS  Google Scholar 

  19. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331: 44–49.

    Article  CAS  Google Scholar 

  20. Keating GM . Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs 2010; 70: 1445–1476.

    Article  CAS  Google Scholar 

  21. Weiner GJ . Rituximab: mechanism of action. Semin Hematol 2010; 47: 115–123.

    Article  CAS  Google Scholar 

  22. Ziegler HW, Kay NE, Zarling JM . Deficiency of natural killer cell activity in patients with chronic lymphocytic leukemia. Int J Cancer 1981; 27: 321–327.

    Article  CAS  Google Scholar 

  23. Kay NE, Zarling JM . Impaired natural killer activity in patients with chronic lymphocytic leukemia is associated with a deficiency of azurophilic cytoplasmic granules in putative NK cells. Blood 1984; 63: 305–309.

    CAS  Google Scholar 

  24. Platsoucas CD, Fernandes G, Gupta SL, Kempin S, Clarkson B, Good RA et al. Defective spontaneous and antibody-dependent cytotoxicity mediated by E-rosette-positive and E-rosette-negative cells in untreated patients with chronic lymphocytic leukemia: augmentation by in vitro treatment with interferon. J Immunol 1980; 125: 1216–1223.

    CAS  Google Scholar 

  25. Jaglowski SM, Alinari L, Lapalombella R, Muthusamy N, Byrd JC . The clinical application of monoclonal antibodies in chronic lymphocytic leukemia. Blood 2010; 116: 3705–3714.

    Article  CAS  Google Scholar 

  26. Tone M, Tone Y, Adams E, Yates SF, Frewin MR, Cobbold SP et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 2003; 100: 15059–15064.

    Article  CAS  Google Scholar 

  27. Bae EM, Kim WJ, Suk K, Kang YM, Park JE, Kim WY et al. Reverse signaling initiated from GITRL induces NF-kappaB activation through ERK in the inflammatory activation of macrophages. Mol Immunol 2008; 45: 523–533.

    Article  CAS  Google Scholar 

  28. Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z et al. The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia. Blood 2002; 100: 1215–1219.

    CAS  Google Scholar 

  29. Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N et al. IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci USA 2007; 104: 13408–13413.

    Article  CAS  Google Scholar 

  30. Wierda WG, Johnson MM, Do KA, Manshouri T, Dey A, O’Brien S et al. Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia. Br J Haematol 2003; 120: 452–456.

    Article  Google Scholar 

  31. Lai R, O’Brien S, Maushouri T, Rogers A, Kantarjian H, Keating M et al. Prognostic value of plasma interleukin-6 levels in patients with chronic lymphocytic leukemia. Cancer 2002; 95: 1071–1075.

    Article  CAS  Google Scholar 

  32. Hanabuchi S, Watanabe N, Wang YH, Wang YH, Ito T, Shaw J et al. Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL). Blood 2006; 107: 3617–3623.

    Article  CAS  Google Scholar 

  33. Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C . GITR/GITRL: more than an effector T cell co-stimulatory system. Eur J Immunol 2007; 37: 1165–1169.

    Article  CAS  Google Scholar 

  34. Secchiero P, Corallini F, Barbarotto E, Melloni E, di Iasio MG, Tiribelli M et al. Role of the RANKL/RANK system in the induction of interleukin-8 (IL-8) in B chronic lymphocytic leukemia (B-CLL) cells. J Cell Physiol 2006; 207: 158–164.

    Article  CAS  Google Scholar 

  35. Nishio M, Endo T, Tsukada N, Ohata J, Kitada S, Reed JC et al. Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 2005; 106: 1012–1020.

    Article  CAS  Google Scholar 

  36. Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V et al. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 2004; 103: 679–688.

    Article  CAS  Google Scholar 

  37. Endo T, Nishio M, Enzler T, Cottam HB, Fukuda T, James DF et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood 2007; 109: 703–710.

    Article  CAS  Google Scholar 

  38. D’Arena G, Laurenti L, Minervini MM, Deaglio S, Bonello L, De Martino L et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res 2011; 35: 363–368.

    Article  Google Scholar 

  39. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.

    Article  CAS  Google Scholar 

  40. Giannopoulos K, Schmitt M, Kowal M, Wlasiuk P, Bojarska-Junak A, Chen J et al. Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol Rep 2008; 20: 677–682.

    Google Scholar 

  41. Gowda A, Ramanunni A, Cheney C, Rozewski D, Kindsvogel W, Lehman A et al. Differential effects of IL-2 and IL-21 on expansion of the CD4+ CD25+ Foxp3+ T regulatory cells with redundant roles in natural killer cell mediated antibody dependent cellular cytotoxicity in chronic lymphocytic leukemia. MAbs 2010; 2: 35–41.

    Article  Google Scholar 

  42. Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, Orban PC et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 2002; 196: 1335–1346.

    Article  CAS  Google Scholar 

  43. Tuyaerts S, Van Meirvenne S, Bonehill A, Heirman C, Corthals J, Waldmann H et al. Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+CD25+ regulatory T cells. J Leukoc Biol 2007; 82: 93–105.

    Article  CAS  Google Scholar 

  44. Bianchini R, Bistoni O, Alunno A, Petrillo MG, Ronchetti S, Sportoletti P et al. CD4(+) CD25(low) GITR(+) cells: A novel human CD4(+) T-cell population with regulatory activity. Eur J Immunol 2011; 41: 2269–2278.

    Article  CAS  Google Scholar 

  45. Dunn GP, Koebel CM, Schreiber RD . Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6: 836–848.

    Article  CAS  Google Scholar 

  46. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S . Functions of natural killer cells. Nat Immunol 2008; 9: 503–510.

    Article  CAS  Google Scholar 

  47. Baessler T, Charton JE, Schmiedel BJ, Grunebach F, Krusch M, Wacker A et al. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood 2010; 115: 3058–3069.

    Article  CAS  Google Scholar 

  48. Groh V, Wu J, Yee C, Spies T . Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738.

    Article  CAS  Google Scholar 

  49. Alduaij W, Ivanov A, Honeychurch J, Cheadle E, Potluri S, Lim SH et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood 2011; 117: 4519–4529.

    Article  CAS  Google Scholar 

  50. Oflazoglu E, Audoly LP . Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. MAbs 2010; 2: 14–19.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from the Wilhelm Sander Stiftung (2007.115.2) and the Deutsche Krebshilfe (108208 and 109620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H R Salih.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buechele, C., Baessler, T., Wirths, S. et al. Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL). Leukemia 26, 991–1000 (2012). https://doi.org/10.1038/leu.2011.313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.313

Keywords

This article is cited by

Search

Quick links