Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview

Abstract

Congenital heart diseases (CHD) are the most commonly overlooked lesions in prenatal screening programs. Real-time two-dimensional ultrasound (2DUS) is the conventionally used tool for fetal echocardiography. Although continuous improvements in the hardware and post-processing software have resulted in a good image quality even in late first trimester, 2DUS still has its limitations. Four-dimensional ultrasound with spatiotemporal image correlation (STIC) is an automated volume acquisition, recording a single three-dimensional (3D) volume throughout a complete cardiac cycle, which results in a four-dimensional (4D) volume. STIC has the potential to increase the detection rate of CHD. The aim of this study is to provide a practical overview of the possibilities and (dis)advantages of STIC. A review of literature and evaluation of the current status and clinical value of 3D/4D ultrasound in prenatal screening and diagnosis of congenital heart disease are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Bernier PL, Stefanescu A, Samoukovic G, Tchervenkov CI . The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2010; 13: 26–34.

    Article  PubMed  Google Scholar 

  2. Hoffman JI, Kaplan S . The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890–1900.

    Article  PubMed  Google Scholar 

  3. van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58: 2241–2247.

    Article  PubMed  Google Scholar 

  4. Hoffman JI . Congenital heart disease: incidence and inheritance. Pediatr Clin North Am 1990; 37: 25–43.

    Article  CAS  PubMed  Google Scholar 

  5. Khoshnood B, De VC, Vodovar V, Goujard J, Lhomme A, Bonnet D et al. Trends in prenatal diagnosis, pregnancy termination, and perinatal mortality of newborns with congenital heart disease in France, 1983-2000: a population-based evaluation. Pediatrics 2005; 115: 95–101.

    Article  PubMed  Google Scholar 

  6. Mahle WT, Clancy RR, McGaurn SP, Goin JE, Clark BJ . Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics 2001; 107: 1277–1282.

    Article  CAS  PubMed  Google Scholar 

  7. Benson CB, Doubilet PM . The history of imaging in obstetrics. Radiology 2014; 273: S92–110.

    Article  PubMed  Google Scholar 

  8. Goldberg BB . Obstetric US imaging: the past 40 years. Radiology 2000; 215: 622–629.

    Article  CAS  PubMed  Google Scholar 

  9. Copel JA, Pilu G, Green J, Hobbins JC, Kleinman CS . Fetal echocardiographic screening for congenital heart disease: the importance of the four-chamber view. Am J Obstet Gynecol 1987; 157: 648–655.

    Article  CAS  PubMed  Google Scholar 

  10. Ogge G, Gaglioti P, Maccanti S, Faggiano F, Todros T . Prenatal screening for congenital heart disease with four-chamber and outflow-tract views: a multicenter study. Ultrasound Obstet Gynecol 2006; 28: 779–784.

    Article  CAS  PubMed  Google Scholar 

  11. van VC, Clur S, Rijlaarsdam M, Bax C, Pajkrt E, Heymans M et al. Prenatal detection of congenital heart disease-results of a national screening programme. BJOG 2015; 123: 400–407.

    Google Scholar 

  12. Sharland G . Fetal cardiac screening and variation in prenatal detection rates of congenital heart disease: why bother with screening at all? Future Cardiol 2012; 8: 189–202.

    Article  PubMed  Google Scholar 

  13. Garne E, Stoll C, Clementi M . Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries. Ultrasound Obstet Gynecol 2001; 17: 386–391.

    Article  CAS  PubMed  Google Scholar 

  14. Tegnander E, Eik-Nes SH . The examiner's ultrasound experience has a significant impact on the detection rate of congenital heart defects at the second-trimester fetal examination. Ultrasound Obstet Gynecol 2006; 28: 8–14.

    Article  CAS  PubMed  Google Scholar 

  15. DeVore GR, Medearis AL, Bear MB, Horenstein J, Platt LD . Fetal echocardiography: factors that influence imaging of the fetal heart during the second trimester of pregnancy. J Ultrasound Med 1993; 12: 659–663.

    Article  CAS  PubMed  Google Scholar 

  16. DeVore GR, Falkensammer P, Sklansky MS, Platt LD . Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart. Ultrasound Obstet Gynecol 2003; 22: 380–387.

    Article  CAS  PubMed  Google Scholar 

  17. Bakiler AR, Ozer EA, Kanik A, Kanit H, Aktas FN . Accuracy of prenatal diagnosis of congenital heart disease with fetal echocardiography. Fetal Diagn Ther 2007; 22: 241–244.

    Article  PubMed  Google Scholar 

  18. Berghella V, Pagotto L, Kaufman M, Huhta JC, Wapner RJ . Accuracy of prenatal diagnosis of congenital heart defects. Fetal Diagn Ther 2001; 16: 407–412.

    Article  CAS  PubMed  Google Scholar 

  19. Shub A, Ward C, Lee-Tannock A, Justo R, Cincotta R . Fetal echocardiography: are we getting it right? Prenat Diagn 2004; 24: 972–976.

    Article  CAS  PubMed  Google Scholar 

  20. Vinals F, Poblete P, Giuliano A . Spatio-temporal image correlation (STIC): a new tool for the prenatal screening of congenital heart defects. Ultrasound Obstet Gynecol 2003; 22: 388–394.

    Article  CAS  PubMed  Google Scholar 

  21. Araujo JE, Nardozza LM, Moron AF . Three-dimensional ultrasound STIC-HDlive rendering: new technique to assessing of fetal heart. Rev Bras Cir Cardiovasc 2013; 28: 5–7.

    Article  Google Scholar 

  22. Chaoui R, Hoffmann J, Heling KS . Three-dimensional (3D) and 4D color Doppler fetal echocardiography using spatio-temporal image correlation (STIC). Ultrasound Obstet Gynecol 2004; 23: 535–545.

    Article  CAS  PubMed  Google Scholar 

  23. Kusanovic JP, Nien JK, Goncalves LF, Espinoza J, Lee W, Balasubramaniam M et al. The use of inversion mode and 3D manual segmentation in volume measurement of fetal fluid-filled structures: comparison with Virtual Organ Computer-aided AnaLysis (VOCAL). Ultrasound Obstet Gynecol 2008; 31: 177–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Messing B, Cohen SM, Valsky DV, Rosenak D, Hochner-Celnikier D, Savchev S et al. Fetal cardiac ventricle volumetry in the second half of gestation assessed by 4D ultrasound using STIC combined with inversion mode. Ultrasound Obstet Gynecol 2007; 30: 142–151.

    Article  CAS  PubMed  Google Scholar 

  25. Yagel S, Benachi A, Bonnet D, Dumez Y, Hochner-Celnikier D, Cohen SM et al. Rendering in fetal cardiac scanning: the intracardiac septa and the coronal atrioventricular valve planes. Ultrasound Obstet Gynecol 2006; 28: 266–274.

    Article  CAS  PubMed  Google Scholar 

  26. Goncalves LF, Lee W, Espinoza J, Romero R . Examination of the fetal heart by four-dimensional (4D) ultrasound with spatio-temporal image correlation (STIC). Ultrasound Obstet Gynecol 2006; 27: 336–348.

    Article  CAS  PubMed  Google Scholar 

  27. Goncalves LF, Lee W, Chaiworapongsa T, Espinoza J, Schoen ML, Falkensammer P et al. Four-dimensional ultrasonography of the fetal heart with spatiotemporal image correlation. Am J Obstet Gynecol 2003; 189: 1792–1802.

    Article  PubMed  Google Scholar 

  28. Goncalves LF, Espinoza J, Romero R, Lee W, Treadwell MC, Huang R et al. Four-dimensional fetal echocardiography with spatiotemporal image correlation (STIC): a systematic study of standard cardiac views assessed by different observers. J Matern Fetal Neonatal Med 2005; 17: 323–331.

    Article  PubMed  Google Scholar 

  29. Uittenbogaard LB, Haak MC, Spreeuwenberg MD, van Vugt JM . A systematic analysis of the feasibility of four-dimensional ultrasound imaging using spatiotemporal image correlation in routine fetal echocardiography. Ultrasound Obstet Gynecol 2008; 31: 625–632.

    Article  CAS  PubMed  Google Scholar 

  30. Paladini D, Volpe P, Sglavo G, Vassallo M, De RV, Marasini M et al. Transposition of the great arteries in the fetus: assessment of the spatial relationships of the arterial trunks by four-dimensional echocardiography. Ultrasound Obstet Gynecol 2008; 31: 271–276.

    Article  CAS  PubMed  Google Scholar 

  31. Lee W, Goncalves LF, Espinoza J, Romero R . Inversion mode: a new volume analysis tool for 3-dimensional ultrasonography. J Ultrasound Med 2005; 24: 201–207.

    Article  CAS  PubMed  Google Scholar 

  32. Rizzo G, Capponi A, Pietrolucci ME, Arduini D . Sonographic automated volume count (SonoAVC) in volume measurement of fetal fluid-filled structures: comparison with Virtual Organ Computer-aided AnaLysis (VOCAL). Ultrasound Obstet Gynecol 2008; 32: 111–112.

    Article  CAS  PubMed  Google Scholar 

  33. Salama S, Arbo E, Lamazou F, Levailllant JM, Frydman R, Fanchin R . Reproducibility and reliability of automated volumetric measurement of single preovulatory follicles using SonoAVC. Fertil Steril 2010; 93: 2069–2073.

    Article  PubMed  Google Scholar 

  34. Haak MC, Uittenbogaard LB, van Vugt JM . Spatiotemporal image correlation artifacts in an in vitro model. J Ultrasound Med 2011; 30: 1411–1414.

    Article  PubMed  Google Scholar 

  35. Paladini D, Sglavo G, Masucci A, Pastore G, Nappi C . Role of four-dimensional ultrasound (spatiotemporal image correlation and sonography-based automated volume count) in prenatal assessment of atrial morphology in cardiosplenic syndromes. Ultrasound Obstet Gynecol 2011; 38: 337–343.

    Article  CAS  PubMed  Google Scholar 

  36. Adriaanse BM, Uittenbogaard LB, Tromp CH, Schaefer SS, Heyman MW, van Vugt JM et al. Prenatal examination of the area and morphology of the atrioventricular valves using four-dimensional ultrasound in normal and abnormal hearts. Prenat Diagn 2015; 35: 741–747.

    Article  CAS  PubMed  Google Scholar 

  37. Rolo LC, Nardozza LM, Araujo JE, Hatanaka AR, Rocha LA, Simioni C et al. Reference ranges of atrioventricular valve areas by means of four-dimensional ultrasonography using spatiotemporal image correlation in the rendering mode. Prenat Diagn 2013; 33: 50–55.

    Article  PubMed  Google Scholar 

  38. Bennasar M, Martinez JM, Olivella A, del RM, Gomez O, Figueras F et al. Feasibility and accuracy of fetal echocardiography using four-dimensional spatiotemporal image correlation technology before 16 weeks' gestation. Ultrasound Obstet Gynecol 2009; 33: 645–651.

    Article  CAS  PubMed  Google Scholar 

  39. Rolo LC, Pietrolucci ME, Araujo JE, Barros FS, Nardozza LM, Martins WP et al. Viewing rate and reproducibility of papillary muscle areas in foetal atrioventricular valves using spatio-temporal image correlation in the rendering mode in congenital heart disease. J Matern Fetal Neonatal Med 2014; 28: 1375–1380.

    Article  Google Scholar 

  40. Rolo LC, Rizzo G, Pietrolucci ME, Barros FS, Nardozza LM, Martins WP et al. Viewing rate and reference ranges for papillary muscle areas of the fetal heart using four-dimensional ultrasound in the rendering mode. Prenat Diagn 2014; 34: 1153–1160.

    Article  PubMed  Google Scholar 

  41. Yagel S, Cohen SM, Shapiro I, Valsky DV . 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart. Ultrasound Obstet Gynecol 2007; 29: 81–95.

    Article  CAS  PubMed  Google Scholar 

  42. Myers SA, Fresquez M, Hamill N . Four-dimensional sonography of the fetal heart with spatiotemporal image correlation directed at the interventricular septum. J Ultrasound Med 2007; 26: 1071–1075.

    Article  PubMed  Google Scholar 

  43. Nardozza LM, Rolo LC, Araujo JE, Hatanaka AR, Rocha LA, Simioni C et al. Reference range for fetal interventricular septum area by means of four-dimensional ultrasonography using spatiotemporal image correlation. Fetal Diagn Ther 2013; 33: 110–115.

    Article  PubMed  Google Scholar 

  44. Tongprasert F, Srisupundit K, Luewan S, Sirichotiyakul S, Piyamongkol W, Wanapirak C et al. Reference ranges of fetal aortic and pulmonary valve diameter derived by STIC from 14 to 40 weeks of gestation. Prenat Diagn 2011; 31: 439–445.

    Article  PubMed  Google Scholar 

  45. Adriaanse BM, Uittenbogaard LB, Tromp CH, Heyman MW, van Vugt JM, Haak MC . Prenatal visualization of the aortic and pulmonary valve and leaflets is feasible using four-dimensional ultrasound. J Ultrasound Med 2016, (e-pub ahead of print; doi: 10.7863/ultra.15.04013).

    Article  PubMed  Google Scholar 

  46. Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P et al. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol 2011; 205: 1–10.

    Article  Google Scholar 

  47. Molina FS, Faro C, Sotiriadis A, Dagklis T, Nicolaides KH . Heart stroke volume and cardiac output by four-dimensional ultrasound in normal fetuses. Ultrasound Obstet Gynecol 2008; 32: 181–187.

    Article  CAS  PubMed  Google Scholar 

  48. Uittenbogaard LB, Haak MC, Spreeuwenberg MD, van Vugt JM . Fetal cardiac function assessed with four-dimensional ultrasound imaging using spatiotemporal image correlation. Ultrasound Obstet Gynecol 2009; 33: 272–281.

    Article  CAS  PubMed  Google Scholar 

  49. Simioni C, Nardozza LM, Araujo JE, Rolo LC, Zamith M, Caetano AC et al. Heart stroke volume, cardiac output, and ejection fraction in 265 normal fetus in the second half of gestation assessed by 4D ultrasound using spatio-temporal image correlation. J Matern Fetal Neonatal Med 2011; 24: 1159–1167.

    Article  PubMed  Google Scholar 

  50. Uittenbogaard LB, Haak MC, Tromp CH, Terwee CB, van Vugt JM . Reliability of fetal cardiac volumetry using spatiotemporal image correlation: assessment of in-vivo and in-vitro measurements. Ultrasound Obstet Gynecol 2010; 36: 308–314.

    Article  CAS  PubMed  Google Scholar 

  51. Messing B, Cohen SM, Valsky DV, Shen O, Rosenak D, Lipschuetz M et al. Fetal heart ventricular mass obtained by STIC acquisition combined with inversion mode and VOCAL. Ultrasound Obstet Gynecol 2011; 38: 191–197.

    Article  CAS  PubMed  Google Scholar 

  52. Schoonderwaldt EM, Groenenberg IA, Hop WC, Wladimiroff JW, Steegers EA . Reproducibility of echocardiographic measurements of human fetal left ventricular volumes and ejection fractions using four-dimensional ultrasound with the spatio-temporal image correlation modality. Eur J Obstet Gynecol Reprod Biol 2012; 160: 22–29.

    Article  PubMed  Google Scholar 

  53. Uittenbogaard LB, Haak MC, Peters RJ, van Couwelaar GM, van Vugt JM . Validation of volume measurements for fetal echocardiography using four-dimensional ultrasound imaging and spatiotemporal image correlation. Ultrasound Obstet Gynecol 2010; 35: 324–331.

    Article  CAS  PubMed  Google Scholar 

  54. Vinals F, Mandujano L, Vargas G, Giuliano A . Prenatal diagnosis of congenital heart disease using four-dimensional spatio-temporal image correlation (STIC) telemedicine via an Internet link: a pilot study. Ultrasound Obstet Gynecol 2005; 25: 25–31.

    Article  CAS  PubMed  Google Scholar 

  55. Vinals F, Ascenzo R, Naveas R, Huggon I, Giuliano A . Fetal echocardiography at 11+0 to 13+6 weeks using four-dimensional spatiotemporal image correlation telemedicine via an Internet link: a pilot study. Ultrasound Obstet Gynecol 2008; 31: 633–638.

    Article  CAS  PubMed  Google Scholar 

  56. Espinoza J, Lee W, Comstock C, Romero R, Yeo L, Rizzo G et al. Collaborative study on 4-dimensional echocardiography for the diagnosis of fetal heart defects: the COFEHD study. J Ultrasound Med 2010; 29: 1573–1580.

    Article  PubMed  Google Scholar 

  57. Adriaanse BM, Tromp CH, Simpson JM, van MT, Kist WJ, Kuik DJ et al. Interobserver agreement in detailed prenatal diagnosis of congenital heart disease by telemedicine using four-dimensional ultrasound with spatiotemporal image correlation. Ultrasound Obstet Gynecol 2012; 39: 203–209.

    Article  CAS  PubMed  Google Scholar 

  58. Adriaanse BM, Bartelings MM, van Vugt JM, Chaoui R, Gittenberger-de Groot AC, Haak MC . The differential and linear insertion of the atrioventricular valves: a useful tool? Ultrasound Obstet Gynecol 2014; 44: 568–574.

    Article  CAS  PubMed  Google Scholar 

  59. Bennasar M, Martinez JM, Gomez O, Bartrons J, Olivella A, Puerto B et al. Accuracy of four-dimensional spatiotemporal image correlation echocardiography in the prenatal diagnosis of congenital heart defects. Ultrasound Obstet Gynecol 2010; 36: 458–464.

    Article  CAS  PubMed  Google Scholar 

  60. Araujo JE, Rolo LC, Rocha LA, Nardozza LM, Moron AF . The value of 3D and 4D assessments of the fetal heart. Int J Womens Health 2014; 6: 501–507.

    Article  Google Scholar 

  61. Shen O, Yagel S . The added value of 3D/4D ultrasound imaging in fetal cardiology: has the promise been fulfilled? Ultrasound Obstet Gynecol 2010; 35: 260–262.

    Article  CAS  PubMed  Google Scholar 

  62. Yagel S, Cohen SM, Rosenak D, Messing B, Lipschuetz M, Shen O et al. Added value of three-/four-dimensional ultrasound in offline analysis and diagnosis of congenital heart disease. Ultrasound Obstet Gynecol 2011; 37: 432–437.

    Article  CAS  PubMed  Google Scholar 

  63. Hartge D, Hoffmann U, Schroer A, Weichert J . Three- and four-dimensional ultrasound in the diagnosis of fetal tetralogy of fallot with absent pulmonary valve and microdeletion 22q11. Pediatr Cardiol 2010; 31: 1100–1103.

    Article  PubMed  Google Scholar 

  64. Yagel S, Valsky DV, Messing B . Detailed assessment of fetal ventricular septal defect with 4D color Doppler ultrasound using spatio-temporal image correlation technology. Ultrasound Obstet Gynecol 2005; 25: 97–98.

    Article  CAS  PubMed  Google Scholar 

  65. Paladini D, Sglavo G, Greco E, Nappi C . Cardiac screening by STIC: can sonologists performing the 20-week anomaly scan pick up outflow tract abnormalities by scrolling the A-plane of STIC volumes? Ultrasound Obstet Gynecol 2008; 32: 865–870.

    Article  CAS  PubMed  Google Scholar 

  66. DeVore GR, Polanco B, Sklansky MS, Platt LD . The 'spin' technique: a new method for examination of the fetal outflow tracts using three-dimensional ultrasound. Ultrasound Obstet Gynecol 2004; 24: 72–82.

    Article  CAS  PubMed  Google Scholar 

  67. Yeo L, Romero R, Jodicke C, Kim SK, Gonzalez JM, Ogge G et al. Simple targeted arterial rendering (STAR) technique: a novel and simple method to visualize the fetal cardiac outflow tracts. Ultrasound Obstet Gynecol 2011; 37: 549–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yeo L, Romero R, Jodicke C, Ogge G, Lee W, Kusanovic JP et al. Four-chamber view and 'swing technique' (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes. Ultrasound Obstet Gynecol 2011; 37: 423–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yeo L, Romero R . Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol 2013; 42: 268–284.

    Article  PubMed  Google Scholar 

  70. Wanitpongpan P, Kanagawa T, Kinugasa Y, Kimura T . Spatio-temporal image correlation (STIC) used by general obstetricians is marginally clinically effective compared to 2D fetal echocardiography scanning by experts. Prenat Diagn 2008; 28: 923–928.

    Article  PubMed  Google Scholar 

  71. Zheng M, Schaal M, Chen Y, Li X, Shentu W, Zhang P et al. Real-time 3-dimensional echocardiographic assessment of ventricular volume, mass, and function in human fetuses. PLoS One 2013; 8: e58494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Acar P, Dulac Y, Taktak A, Abadir S . Real-time three-dimensional fetal echocardiography using matrix probe. Prenat Diagn 2005; 25: 370–375.

    Article  PubMed  Google Scholar 

  73. McElhinney DB, Marshall AC, Wilkins-Haug LE, Brown DW, Benson CB, Silva V et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation 2009; 120: 1482–1490.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Arzt W, Wertaschnigg D, Veit I, Klement F, Gitter R, Tulzer G . Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: experience and results of 24 procedures. Ultrasound Obstet Gynecol 2011; 37: 689–695.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B M E Adriaanse.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adriaanse, B., van Vugt, J. & Haak, M. Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview. J Perinatol 36, 685–693 (2016). https://doi.org/10.1038/jp.2016.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.23

This article is cited by

Search

Quick links