Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Cardiorespiratory events in preterm infants: interventions and consequences

Abstract

Stabilization of respiration and oxygenation continues to be one of the main challenges in clinical care of the neonate. Despite aggressive respiratory support including mechanical ventilation, continuous positive airway pressure, oxygen and caffeine therapy to reduce apnea and accompanying intermittent hypoxemia, the incidence of intermittent hypoxemia events continues to increase during the first few months of life. Even with improvements in clinical care, standards for oxygen saturation targeting and modes of respiratory support have yet to be identified in this vulnerable infant cohort. In addition, we are only beginning to explore the association between the incidence and pattern of cardiorespiratory events during early postnatal life and both short- and long-term morbidity including retinopathy of prematurity, growth, sleep-disordered breathing and neurodevelopmental impairment. Part 1 of this review included a summary of lung development and diagnostic methods of cardiorespiratory monitoring. In Part 2 we focus on clinical interventions and the short- and long-term consequences of cardiorespiratory events in preterm infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Brockmann PE, Wiechers C, Pantalitschka T, Diebold J, Vagedes J, Poets CF . Under-recognition of alarms in a neonatal intensive care unit. Arch Dis Child Fetal Neonatal Ed 2013; 98 (6): F524–F527.

    PubMed  Google Scholar 

  2. Poets CF . Interventions for apnoea of prematurity: a personal view. Acta Paediatr 2010; 99 (2): 172–177.

    CAS  PubMed  Google Scholar 

  3. Moll M, Schoning M, Golz R, Dobler-Neumann M, Arand J, Krageloh-Mann I et al. 2-Year follow-up examinations (Bayley II) in infants born at <32 weeks in a German perinatal center. Klin Padiatr 2011; 223: 251–254.

    CAS  PubMed  Google Scholar 

  4. Jenni OG, von Siebenthal K, Wolf M, Keel M, Duc G, Bucher HU . Effect of nursing in the head elevated tilt position (15) on the incidence of bradycardic and hypoxemic episodes in preterm infants. Pediatrics 1997; 100: 622–625.

    CAS  PubMed  Google Scholar 

  5. Reher C, Kuny KD, Pantalitschka T, Urschitz MS, Poets CF . Randomised crossover trial of different postural interventions on bradycardia and intermittent hypoxia in preterm infants. Arch Dis Child Fetal Neonatal Ed 2008; 93 (4): F289–F291.

    CAS  PubMed  Google Scholar 

  6. Pantalitschka T, Sievers J, Urschitz MS, Herberts T, Reher C, Poets CF . Randomised crossover trial of four nasal respiratory support systems for apnoea of prematurity in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 2009; 94 (4): F245–F248.

    CAS  PubMed  Google Scholar 

  7. De Paoli AG, Davis PG, Faber B, Morley CJ . Devices and pressure sources for administration of nasal continuous positive airway pressure (NCPAP) in preterm neonates. Cochrane Database Syst Rev 2008; (1): CD002977.

  8. Davis PG, Lemyre B, de Paoli AG . Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev 2001; (3): CD003212.

  9. Lemyre B, Davis PG, De Paoli AG . Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for apnea of prematurity. Cochrane Database Syst Rev 2000; (3): CD002272.

  10. Gizzi C, Montecchia F, Panetta V, Castellano C, Mariani C, Campelli M et al. Is synchronised NIPPV more effective than NIPPV and NCPAP in treating apnoea of prematurity (AOP)? A randomised cross-over trial. Arch Dis Child Fetal Neonatal Ed 2014; 100 (1): F17–F23.

    PubMed  Google Scholar 

  11. Owen LS, Morley CJ, Dawson JA, Davis PG . Effects of non-synchronised nasal intermittent positive pressure ventilation on spontaneous breathing in preterm infants. Arch Dis Child Fetal Neonatal Ed 2011; 96 (6): F422–F428.

    CAS  PubMed  Google Scholar 

  12. Owen LS, Morley CJ, Davis PG . Effects of synchronisation during SiPAP-generated nasal intermittent positive pressure ventilation (NIPPV) in preterm infants. Arch Dis Child Fetal Neonatal Ed 2015; 100 (1): F24–F30.

    CAS  PubMed  Google Scholar 

  13. Kraaijenga JV, Hutten GJ, de Jongh FH, van Kaam AH . The effect of caffeine on diaphragmatic activity and tidal volume in preterm infants. J Pediatr 2015; 167 (1): 70–75.

    CAS  PubMed  Google Scholar 

  14. Schmidt B . Methylxanthine therapy in premature infants: sound practice, disaster, or fruitless byway? J Pediatr 1999; 135: 526–528.

    CAS  PubMed  Google Scholar 

  15. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A et al. Caffeine therapy for apnea of prematurity. N Engl J Med 2006; 354 (20): 2112–2121.

    CAS  PubMed  Google Scholar 

  16. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 2007; 357 (19): 1893–1902.

    CAS  PubMed  Google Scholar 

  17. Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV et al. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA 2012; 307 (3): 275–282.

    CAS  PubMed  Google Scholar 

  18. Doyle LW, Schmidt B, Anderson PJ, Davis PG, Moddemann D, Grunau RE et al. Reduction in developmental coordination disorder with neonatal caffeine therapy. J Pediatr 2014; 165 (2): 356–359.e352.

    PubMed  Google Scholar 

  19. Marcus CL, Meltzer LJ, Roberts RS, Traylor J, Dix J, D'Ilario J et al. Long-term effects of caffeine therapy for apnea of prematurity on sleep at school age. Am J Respir Crit Care Med 2014; 190 (7): 791–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Davis PG, Schmidt B, Roberts RS, Doyle LW, Asztalos E, Haslam R et al. Caffeine for Apnea of Prematurity trial: benefits may vary in subgroups. J Pediatr 2010; 156 (3): 382–387.

    CAS  PubMed  Google Scholar 

  21. Barrington KJ, Roberts R, Schmidt B, Asztalos E, Bairam A, Ohlsson A et al. The Caffeine for Apnea of Prematurity (CAP) Trial, Analyses of Dose Effect. PAS 2010.

  22. Lodha A, Seshia M, McMillan DD, Barrington K, Yang J, Lee SK et al. Association of early caffeine administration and neonatal outcomes in very preterm neonates. JAMA Pediatr 2015; 169 (1): 33–38.

    PubMed  Google Scholar 

  23. Rhein LM, Dobson NR, Darnall RA, Corwin MJ, Heeren TC, Poets CF et al. Effects of caffeine on intermittent hypoxia in infants born prematurely: a randomized clinical trial. JAMA Pediatr 2014; 168 (3): 250–257.

    PubMed  Google Scholar 

  24. Steer P, Flenady V, Shearman A, Charles B, Gray PH, Henderson-Smart D et al. High dose caffeine citrate for extubation of preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 2004; 89 (6): F499–F503.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gray PH, Flenady VJ, Charles BG, Steer PA . Caffeine citrate for very preterm infants: effects on development, temperament and behaviour. J Paediatr Child Health 2011; 47 (4): 167–172.

    PubMed  Google Scholar 

  26. Chavez Valdez R, Ahlawat R, Wills-Karp M, Nathan A, Ezell T, Gauda EB . Correlation between serum caffeine levels and changes in cytokine profile in a cohort of preterm infants. J Pediatr 2011; 158: 57–64, 64.e1.

    CAS  PubMed  Google Scholar 

  27. Natarajan G, Botica ML, Thomas R, Aranda JV . Therapeutic drug monitoring for caffeine in preterm neonates: an unnecessary exercise? Pediatrics 2007; 119 (5): 936–940.

    PubMed  Google Scholar 

  28. McPherson C, Neil JJ, Tjoeng TH, Pineda R, Inder TE . A pilot randomized trial of high-dose caffeine therapy in preterm infants. Pediatr Res 2015; 78 (2): 198–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Comer AM, Perry CM, Figgitt DP . Caffeine citrate. A review of its use in apnoea of prematurity. Paediatr Drugs 2001; 3: 61–79.

    CAS  PubMed  Google Scholar 

  30. Falcao AC, Fernandez de Gatta MM, Delgado Iribarnegaray MF, Santos Buelga D, Garcia MJ, Dominguez-Gil A et al. Population pharmacokinetics of caffeine in premature neonates. Eur J Clin Pharmacol 1997; 52 (3): 211–217.

    CAS  PubMed  Google Scholar 

  31. Pons G, Carrier O, Richard MO, Rey E, d'Athis P, Moran C et al. Developmental changes of caffeine elimination in infancy. Dev Pharmacol Ther 1988; 11 (5): 258–264.

    CAS  PubMed  Google Scholar 

  32. Henderson-Smart DJ, Osborn DA . Kinesthetic stimulation for preventing apnea in preterm infants. Cochrane Database Syst Rev 2002; 2: CD000373.

    Google Scholar 

  33. Sammon MP, Darnall RA . Entrainment of respiration to rocking in premature infants: coherence analysis. J Appl Physiol 1994; 77: 1548–1554.

    CAS  PubMed  Google Scholar 

  34. Bloch-Salisbury E, Indic P, Bednarek F, Paydarfar D . Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J Appl Physiol (1985) 2009; 107 (4): 1017–1027.

    Google Scholar 

  35. Marlier LGC, Messer J . Olfactory stimulation prevents apnea in premature newborns. Pediatrics 2005; 115: 83–88.

    PubMed  Google Scholar 

  36. Bakwin H . Oxygen therapy in premature babies with anoxemia. Am J Dis Child 1923; 25: 157–162.

    Google Scholar 

  37. Weintraub Z, Alvaro R, Kwiatkowski K, Cates D, Rigatto H . Effects of inhaled oxygen (up to 40%) on periodic breathing and apnea in preterm infants. J Appl Physiol 1992; 72: 116–120.

    CAS  PubMed  Google Scholar 

  38. Simakajornboon N, Beckerman RC, Mack C, Sharon D, Gozal D . Effect of supplemental oxygen on sleep architecture and cardiorespiratory events in preterm infants. Pediatrics 2002; 110: 884–888.

    PubMed  Google Scholar 

  39. Flynn JT, Bancalari E, Snyder ES, Goldberg RN, Feuer W, Cassady J et al. A cohort study of transcutaneous oxygen tension and the incidence and severity of retinopathy of prematurity. N Engl J Med 1992; 326: 1050–1054.

    CAS  PubMed  Google Scholar 

  40. Boost II United Kingdom Collaborative Group, Boost II Australia Collaborative Group, Boost II New Zealand Collaborative Group, Stenson BJ, Tarnow-Mordi WO, Darlow BA et al. Oxygen saturation and outcomes in preterm infants. N Engl J Med 2013; 368 (22): 2094–2104.

    Google Scholar 

  41. Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010; 362 (21): 1959–1969.

    CAS  PubMed  Google Scholar 

  42. Saugstad OD, Aune D . Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology 2014; 105 (1): 55–63.

    CAS  PubMed  Google Scholar 

  43. Schmidt B, Whyte RK, Asztalos EV, Moddemann D, Poets C, Rabi Y et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA 2013; 309 (20): 2111–2120.

    CAS  PubMed  Google Scholar 

  44. Schmidt B, Whyte RK, Roberts RS . Trade-off between lower or higher oxygen saturations for extremely preterm infants: the first benefits of oxygen saturation targeting (BOOST) II trial reports its primary outcome. J Pediatr 2014; 165 (1): 6–8.

    PubMed  Google Scholar 

  45. Di Fiore JM, Walsh M, Wrage L, Rich W, Finer N, Carlo WA et al. Low oxygen saturation target range is associated with increased incidence of intermittent hypoxemia. J Pediatr 2012; 161 (6): 1047–1052.

    PubMed  PubMed Central  Google Scholar 

  46. Armbruster J, Schmidt B, Poets CF, Bassler D . Nurses' compliance with alarm limits for pulse oximetry: qualitative study. J Perinatol 2010; 30 (8): 531–534.

    CAS  PubMed  Google Scholar 

  47. Khan A, Qurashi M, Kwiatkowski K, Cates D, Rigatto H . Measurement of the CO2 apneic threshold in newborn infants: possible relevance for periodic breathing and apnea. J Appl Physiol 2005; 98 (4): 1171–1176.

    PubMed  Google Scholar 

  48. Al-Saif S, Alvaro R, Manfreda J, Kwiatkowski K, Cates D, Qurashi M et al. A randomized controlled trial of theophylline versus CO2 inhalation for treating apnea of prematurity. J Pediatr 2008; 153 (4): 513–518.

    CAS  PubMed  Google Scholar 

  49. Alvaro RE, Khalil M, Qurashi M, Al-Saif S, Al-Matary A, Chiu A et al. CO(2) inhalation as a treatment for apnea of prematurity: a randomized double-blind controlled trial. J Pediatr 2012; 160 (2): 252–257.e251.

    CAS  PubMed  Google Scholar 

  50. Bifano EM, Smith F, Borer J . Relationship between determinants of oxygen delivery and respiratory abnormalities in preterm infants with anemia. J Pediatr 1992; 120: 292–296.

    CAS  PubMed  Google Scholar 

  51. Joshi A, Gerhardt T, Shandloff P, Bancalari E . Blood transfusion effect on the respiratory pattern of preterm infants. Pediatrics 1987; 80: 79–84.

    CAS  PubMed  Google Scholar 

  52. Blank JP, Sheagren TG, Vajaria J, Mangurten HH, Benawra RS, Puppala BL . The role of RBC transfusion in the premature infant. Am J Dis Child 1984; 138: 831–833.

    CAS  PubMed  Google Scholar 

  53. Poets CF, Pauls U, Bohnhorst B . Effect of blood transfusion on apnea, bradycardia and hypoxemia in preterm infants. Eur J Pediatr 1997; 156: 311–316.

    CAS  PubMed  Google Scholar 

  54. Westkamp E, Soditt V, Adrian S, Bohnhorst B, Groneck P, Poets CF . Blood transfusion in anemic infants with apnea of prematurity. Biol Neonate 2002; 82 (4): 228–232.

    PubMed  Google Scholar 

  55. Abu Jawdeh EG, Martin RJ, Dick TE, Walsh MC, Di Fiore JM . The effect of red blood cell transfusion on intermittent hypoxemia in ELBW infants. J Perinatol 2014; 34 (12): 921–925.

    CAS  PubMed  Google Scholar 

  56. Bell EFSR, Widness JA, Mahoney LT, Mock DM, Seward VJ, Cresss GA et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 2005; 115: 1685–1691.

    PubMed  Google Scholar 

  57. Zagol K, Lake DE, Vergales B, Moorman ME, Paget-Brown A, Lee H et al. Anemia, apnea of prematurity, and blood transfusions. J Pediatr 2012; 161 (3): 417–421.e411.

    PubMed  PubMed Central  Google Scholar 

  58. Barrington KJ, Finer NN, Torok-Both G, Jamali F, Coutts RT . Dose-response relationship of doxapram in the therapy for refractory apnea of prematurity. Pediatrics 1987; 80: 22–27.

    CAS  PubMed  Google Scholar 

  59. Hayakawa F, Hakamada S, Kuno K, Nakashima T, Miyachi Y . Doxapram in the treatment of idiopathic apnea of prematurity: desirable dosage and serum concentrations. J Pediatr 1986; 109: 138–140.

    CAS  PubMed  Google Scholar 

  60. Poets CF, Darraj S, Bohnhorst B . Effect of doxapram on episodes of apnoea, bradycardia and hypoxaemia in preterm infants. Biol Neonate 1999; 76 (4): 207–213.

    CAS  PubMed  Google Scholar 

  61. Tay-Uyboco J, Kwiatkowski K, Cates DB, Seifert B, Hasan SU, Rigatto H . Clinical and physiological responses to prolonged nasogastric administration of doxapram for apnea of prematurity. Biol Neonate 1991; 59: 190–200.

    CAS  PubMed  Google Scholar 

  62. Bairam A, Akramoff-Gershan L, Beharry K, Laudignon N, Papageorgiou A, Aranda JV . Gastrointestinal absorption of doxapram in neonates. Am J Perinatol 1991; 8: 110–113.

    CAS  PubMed  Google Scholar 

  63. Sreenan CEP, Demianczuk N, Robertson CMT . Isolated mental developmental delay in very low birth weight infants: association with prolonged doxapram therapy for apnea. J Pediatr 2001; 139: 832–837.

    CAS  PubMed  Google Scholar 

  64. Prins SA, Pans SJ, van Weissenbruch MM, Walther FJ, Simons SH . Doxapram use for apnoea of prematurity in neonatal intensive care. Int J Pediatr 2013; 2013: 251047.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Benard M, Boutroy MJ, Glorieux I, Casper C . Determinants of doxapram utilization: a survey of practice in the French Neonatal and Intensive Care Units. Arch Pediatr 2005; 12 (2): 151–155.

    CAS  PubMed  Google Scholar 

  66. Martin RJ, Wang K, Koroglu O, Di Fiore J, Kc P . Intermittent hypoxic episodes in preterm infants: do they matter? Neonatology 2011; 100 (3): 303–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen J, Smith LE . Retinopathy of prematurity. Angiogenesis 2007; 10 (2): 133–140.

    PubMed  Google Scholar 

  68. Hellstrom A, Ley D, Hansen-Pupp I, Niklasson A, Smith L, Lofqvist C et al. New insights into the development of retinopathy of prematurity–importance of early weight gain. Acta Paediatr 2010; 99 (4): 502–508.

    CAS  PubMed  Google Scholar 

  69. Winners-Mendizabal OG, Orge FH, Di Fiore JM, Martin RJ, Kc P . Hypoxia-hyperoxia paradigms in the development of oxygen-induced retinopathy in a rat pup model. J Neonatal Perinatal Med 2014; 7 (2): 113–117.

    CAS  PubMed  Google Scholar 

  70. York JR, Landers S, Kirby RS, Arbogast PG, Penn JS . Arterial oxygen fluctuation and retinopathy of prematurity in very-low-birth-weight infants. J Perinatol 2004; 24 (2): 82–87.

    PubMed  Google Scholar 

  71. Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK et al. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr 2010; 157 (1): 69–73.

    PubMed  PubMed Central  Google Scholar 

  72. Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington KJ . Apnea is associated with neurodevelopmental impairment in very low birth weight infants. J Perinatol 2004; 24 (12): 763–768.

    PubMed  Google Scholar 

  73. Rosen CL, Larkin EK, Kirchner HL, Emancipator JL, Bivins SF, Surovec SA et al. Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: association with race and prematurity. J Pediatr 2003; 142 (4): 383–389.

    PubMed  Google Scholar 

  74. Paavonen EJ, Strang-Karlsson S, Raikkonen K, Heinonen K, Pesonen AK, Hovi P et al. Very low birth weight increases risk for sleep-disordered breathing in young adulthood: the Helsinki Study of Very Low Birth Weight Adults. Pediatrics 2007; 120 (4): 778–784.

    PubMed  Google Scholar 

  75. Hibbs AM, Johnson NL, Rosen CL, Kirchner HL, Martin R, Storfer-Isser A et al. Prenatal and neonatal risk factors for sleep disordered breathing in school-aged children born preterm. J Pediatr 2008; 153 (2): 176–182.

    PubMed  PubMed Central  Google Scholar 

  76. Reeves SR, Mitchell GS, Gozal D . Early postnatal chronic intermittent hypoxia modifies hypoxic respiratory responses and long-term phrenic facilitation in adult rats. Am J Physiol Regul Integr Comp Physiol 2006; 290 (6): R1664–R1671.

    CAS  PubMed  Google Scholar 

  77. Julien C, Bairam A, Joseph V . Chronic intermittent hypoxia reduces ventilatory long-term facilitation and enhances apnea frequency in newborn rats. Am J Physiol Regul Integr Comp Physiol 2008; 294 (4): R1356–R1366.

    CAS  PubMed  Google Scholar 

  78. Pawar A, Peng YJ, Jacono FJ, Prabhakar NR . Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol 2008; 104 (5): 1287–1294.

    PubMed  Google Scholar 

  79. Nock ML, Difiore JM, Arko MK, Martin RJ . Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants. J Pediatr 2004; 144 (3): 291–295.

    PubMed  Google Scholar 

  80. Cardot V, Chardon K, Tourneux P, Micallef S, Stephan E, Leke A et al. Ventilatory response to a hyperoxic test is related to the frequency of short apneic episodes in late preterm neonates. Pediatr Res 2007; 62 (5): 591–596.

    PubMed  Google Scholar 

  81. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME . Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989; 298 (6673): 564–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Souvannakitti D, Kumar GK, Fox A, Prabhakar NR . Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells. J Neurophysiol 2009; 101 (6): 2837–2846.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Soukhova-O'Hare GK, Cheng ZJ, Roberts AM, Gozal D . Postnatal intermittent hypoxia alters baroreflex function in adult rats. Am J Physiol Heart Circ Physiol 2006; 290 (3): H1157–H1164.

    CAS  PubMed  Google Scholar 

  84. Farahani R, Kanaan A, Gavrialov O, Brunnert S, Douglas RM, Morcillo P et al. Differential effects of chronic intermittent and chronic constant hypoxia on postnatal growth and development. Pediatr Pulmonol 2008; 43 (1): 20–28.

    PubMed  Google Scholar 

  85. Cohen G, Lagercrantz H, Katz-Salamon M . Abnormal circulatory stress responses of preterm graduates. Pediatr Res 2007; 61 (3): 329–334.

    PubMed  Google Scholar 

  86. Pozo ME, Cave A, Koroglu OA, Litvin DG, Martin RJ, Di Fiore J et al. Effect of postnatal intermittent hypoxia on growth and cardiovascular regulation of rat pups. Neonatology 2012; 102 (2): 107–113.

    CAS  PubMed  Google Scholar 

  87. Lee H, Dichtl S, Mormanova Z, Dalla Pozza R, Genzel-Boroviczeny O . In adolescence, extreme prematurity is associated with significant changes in the microvasculature, elevated blood pressure and increased carotid intima-media thickness. Arch Dis Child 2014; 99 (10): 907–911.

    PubMed  Google Scholar 

  88. Gileles-Hillel A, Almendros I, Khalyfa A, Zhang SX, Wang Y, Gozal D . Early intermittent hypoxia induces proatherogenic changes in aortic wall macrophages in a murine model of obstructive sleep apnea. Am J Respir Crit Care Med 2014; 190 (8): 958–961.

    PubMed  PubMed Central  Google Scholar 

  89. Pillekamp F, Hermann C, Keller T, von Gontard A, Kribs A, Roth B . Factors influencing apnea and bradycardia of prematurity—implications for neurodevelopment. Neonatology 2007; 91 (3): 155–161.

    CAS  PubMed  Google Scholar 

  90. Greene MM, Patra K, Khan S, Karst JS, Nelson MN, Silvestri JM . Cardiorespiratory events in extremely low birth weight infants: neurodevelopmental outcome at 1 and 2 years. J Perinatol 2014; 34 (7): 562–565.

    CAS  PubMed  Google Scholar 

  91. Ratner V, Kishkurno SV, Slinko SK, Sosunov SA, Sosunov AA, Polin RA et al. The contribution of intermittent hypoxemia to late neurological handicap in mice with hyperoxia-induced lung injury. Neonatology 2007; 92 (1): 50–58.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Di Fiore.

Ethics declarations

Competing interests

CFP received a research grant from Chiesi Farmaceutici, Parma, Italy, the manufacturer of caffeine citrate in Europe, for a study unrelated to the work submitted. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Fiore, J., Poets, C., Gauda, E. et al. Cardiorespiratory events in preterm infants: interventions and consequences. J Perinatol 36, 251–258 (2016). https://doi.org/10.1038/jp.2015.165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2015.165

This article is cited by

Search

Quick links