Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Proteomics in hypertension

Abstract

Proteomics, the study of the proteins making up the proteome, has emerged in recent years as an important tool in several different fields of medical research for early disease detection, for assessment of response to treatment and for unravelling underlying pathophysiological mechanisms. Although the majority of patients with hypertension are treated in a similar manner, the causes underlying the condition are diverse, and often poorly understood. Genetic studies have implicated several different candidate genes, but it may be that examination of the ‘downstream’ products of genes, the proteins, will help to improve understanding of the link between the environmental and genetic effects that contribute towards development of hypertension. Proteomic studies can be performed quickly and reliably on several different sample types including plasma and urine, requiring minimal pre-test preparation. In this review, we will compare the different analytical platforms and technical issues involved in proteomic analysis. We will discuss existing studies of proteomics in hypertension, as well as related conditions such as renal disease, pre-eclampsia and coronary artery disease. We will also explore potential future applications of proteomics-based research, which may ultimately lead to improved population screening, monitoring of therapy and early detection of target organ damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF . Genetics of hypertension: from experimental animals to humans. Biochim Biophys Acta 2010; 1802: 1299–1308.

    Article  CAS  Google Scholar 

  2. Ginsburg GS, Haga SB . Translating genomic biomarkers into clinically useful diagnostics. Expert Rev Mol Diagn 2006; 6: 179–191.

    Article  CAS  Google Scholar 

  3. Kolch W, Neususs C, Pelzing M, Mischak H . Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev 2005; 24: 959–977.

    Article  CAS  Google Scholar 

  4. Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 2007; 18: 1057–1071.

    Article  CAS  Google Scholar 

  5. Boumpas DT, Kuroiwa T . Urine proteomics for the early diagnosis of acute glomerulonephritis: has the time come? Arthritis Rheum 2007; 56: 705–709.

    Article  CAS  Google Scholar 

  6. Araki Y, Nonaka D, Tajima A, Maruyama M, Nitto T, Ishikawa H et al. Quantitative peptidomic analysis by a newly developed one-step direct transfer technology without depletion of major blood proteins: its potential utility for monitoring of pathophysiological status in pregnancy-induced hypertension. Proteomics 2011; 11: 2727–2737.

    Article  CAS  Google Scholar 

  7. Patterson SD, Aebersold R . Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 1995; 16: 1791–1814.

    Article  CAS  Google Scholar 

  8. Karp NA, McCormick PS, Russell MR, Lilley KS . Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis. Mol Cell Proteomics 2007; 6: 1354–1364.

    Article  CAS  Google Scholar 

  9. Yates JR, Ruse CI, Nakorchevsky A . Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 2009; 11: 49–79.

    Article  CAS  Google Scholar 

  10. Baggerly KA, Morris JS, Edmonson SR, Coombes KR . Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 2005; 97: 307–309.

    Article  CAS  Google Scholar 

  11. Schmitt-Kopplin P, Frommberger M . Capillary electrophoresis-mass spectrometry: 15 years of developments and applications. Electrophoresis 2003; 24: 3837–3867.

    Article  CAS  Google Scholar 

  12. Jantos-Siwy J, Schiffer E, Brand K, Schumann G, Rossing K, Delles C et al. Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res 2009; 8: 268–281.

    Article  CAS  Google Scholar 

  13. Schiffer E, Mischak H, Novak J . High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics 2006; 6: 5615–5627.

    Article  CAS  Google Scholar 

  14. Lange V, Picotti P, Domon B, Aebersold R . Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008; 4: 222.

    Article  Google Scholar 

  15. Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P et al. Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol Cell Proteomics 2011; 10: M110.

    Article  Google Scholar 

  16. Chandra H, Reddy PJ, Srivastava S . Protein microarrays and novel detection platforms. Expert Rev Proteomics 2011; 8: 61–79.

    Article  CAS  Google Scholar 

  17. Thongboonkerd V, Gozal E, Sachleben LR, Arthur JM, Pierce WM, Cai J et al. Proteomic analysis reveals alterations in the renal kallikrein pathway during hypoxia-induced hypertension. J Biol Chem 2002; 277: 34708–34716.

    Article  CAS  Google Scholar 

  18. Jin X, Xia L, Wang LS, Shi JZ, Zheng Y, Chen WL et al. Differential protein expression in hypertrophic heart with and without hypertension in spontaneously hypertensive rats. Proteomics 2006; 6: 1948–1956.

    Article  CAS  Google Scholar 

  19. Lee CK, Han JS, Won KJ, Jung SH, Park HJ, Lee HM et al. Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. Proteomics 2009; 9: 4851–4858.

    Article  CAS  Google Scholar 

  20. Delbosc S, Haloui M, Louedec L, Dupuis M, Cubizolles M, Podust VN et al. Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol Med 2008; 14: 383–394.

    Article  CAS  Google Scholar 

  21. Jing L, Parker CE, Seo D, Hines MW, Dicheva N, Yu Y et al. Discovery of biomarker candidates for coronary artery disease from an APOE-knock out mouse model using iTRAQ-based multiplex quantitative proteomics. Proteomics 2011; 11: 2763–2776.

    Article  CAS  Google Scholar 

  22. Graham D, McBride MW, Brain NJ, Dominiczak AF . Congenic/consomic models of hypertension. Methods Mol Med 2005; 108: 3–15.

    PubMed  Google Scholar 

  23. Zürbig P, Decramer S, Dakna M, Jantos J, Good DM, Coon JJ et al. The human urinary proteome reveals high similarity between kidney aging and chronic kidney disease. Proteomics 2009; 9: 2108–2117.

    Article  Google Scholar 

  24. Jiang H, Schiffer E, Song Z, Wang J, Zurbig P, Thedieck K et al. Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci USA 2008; 105: 11299–11304.

    Article  CAS  Google Scholar 

  25. Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M, Mouls L et al. Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics 2008; 7: 290–298.

    Article  CAS  Google Scholar 

  26. von zur Mühlen C, Schiffer E, Zuerbig P, Kellmann M, Brasse M, Meert N et al. Evaluation of urine proteome pattern analysis for its potential to reflect coronary artery atherosclerosis in symptomatic patients. J Proteome Res 2009; 8: 335–345.

    Article  Google Scholar 

  27. Bramham K, Mistry HD, Poston L, Chappell LC, Thompson AJ . The non-invasive biopsy—will urinary proteomics make the renal tissue biopsy redundant? Q J Med 2009; 102: 523–538.

    Article  CAS  Google Scholar 

  28. Mullen W, Delles C, Mischak H . Urinary proteomics in the assessment of chronic kidney disease. Curr Opin Nephrol Hypertens 2011; 20 (6): 654–661.

    Article  CAS  Google Scholar 

  29. Kiga C, Sakurai H, Goto H, Hayashi K, Shimada Y, Saiki I . Proteomic identification of haptoglobin as a stroke plasma biomarker in spontaneously hypertensive stroke-prone rats. Life Sci 2008; 83: 625–631.

    Article  CAS  Google Scholar 

  30. Cuadrado E, Rosell A, Colome N, Hernandez-Guillamon M, Garcia-Berrocoso T, Ribo M et al. The proteome of human brain after ischemic stroke. J Neuropathol Exp Neurol 2010; 69: 1105–1115.

    Article  CAS  Google Scholar 

  31. Montaner J, Mendioroz M, Delgado P, Garcia-Berrocoso T, Giralt D, Merino C et al. Differentiating ischemic from hemorrhagic stroke using plasma biomarkers: the S100B/RAGE pathway. J Proteomics 2012 (http://dx.doi.org/10.1016/j.jprot.2012.01.033).

  32. Dayon L, Turck N, Garci-Berrocoso T, Walter N, Burkhard PR, Vilalta A et al. Brain extracellular fluid protein changes in acute stroke patients. J Proteome Res 2011; 10: 1043–1051.

    Article  CAS  Google Scholar 

  33. Carty DM, Delles C, Dominiczak AF . Preeclampsia and future maternal health. J Hypertens 2010; 28: 1349–1355.

    Article  CAS  Google Scholar 

  34. Redman CW, Sargent IL . Placental stress and pre-eclampsia: a revised view. Placenta 2009; 30 (Suppl A): S38–S42.

    Article  Google Scholar 

  35. Buhimschi IA, Zhao G, Funai EF, Harris N, Sasson IE, Bernstein IM et al. Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 2008; 199: e1–e16.

    Google Scholar 

  36. Carty DM, Siwy J, Brennand JE, Zurbig P, Mullen W, Franke J et al. Urinary proteomics for prediction of preeclampsia. Hypertension 2011; 57 (3): 561–569.

    Article  CAS  Google Scholar 

  37. Watanabe H, Hamada H, Yamada N, Sohda S, Yamakawa-Kobayashi K, Yoshikawa H et al. Proteome analysis reveals elevated serum levels of clusterin in patients with preeclampsia. Proteomics 2004; 4: 537–543.

    Article  CAS  Google Scholar 

  38. Wang CC, Yim KW, Poon TCW, Choy KW, Chu CY, Lui WT et al. Innate immune response by ficolin binding in apoptotic placenta is associated with the clinical syndrome of preeclampsia. Clin Chem 2007; 53: 42–52.

    Article  CAS  Google Scholar 

  39. Blumenstein M, McMaster MT, Black MA, Wu S, Prakash R, Cooney J et al. A proteomic approach identifies early pregnancy biomarkers for preeclampsia: novel linkages between a predisposition to preeclampsia and cardiovascular disease. Proteomics 2009; 9: 2929–2945.

    Article  CAS  Google Scholar 

  40. Mischak H, Ioannidis JP, Argiles A, Attwood TK, Bongcam-Rudloff E, Broenstrup M et al. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest, (e-pub ahead of print 27 March 2012; doi: 10.1111/j.1365-2362.2012.02674.x.).

Download references

Acknowledgements

This work has been supported by the European Commission’s 7th Framework Programmes EU-MASCARA, PRIORITY and EURATRANS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Delles.

Ethics declarations

Competing interests

DMC and CD report no conflict of interest. ES is employee of Mosaiques Diagnostics GmbH, who develop proteomics-based tests for clinical applications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carty, D., Schiffer, E. & Delles, C. Proteomics in hypertension. J Hum Hypertens 27, 211–216 (2013). https://doi.org/10.1038/jhh.2012.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2012.30

Keywords

This article is cited by

Search

Quick links