Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Triggering of ST-elevation myocardial infarction by ambient wood smoke and other particulate and gaseous pollutants

Abstract

We previously observed increased odds of ST-elevation myocardial infarctions (STEMIs) associated with increased ambient fine particulate matter (PM2.5) in the previous hour. However, data are lacking on the effects of specific PM sources. Using data from 362 patients, a case–crossover design, and conditional logistic regression, we estimated the relative odds of STEMI associated with increased Delta-C (wood smoke), black carbon (BC; traffic), PM2.5, and gaseous pollutants in the previous 1–72 h. We did not observe increased odds of STEMIs associated with increased Delta-C or BC. We did observe increased odds associated with each 7.1 μg/m3 increase in PM2.5 (OR (95% CI): 1.17 (0.99, 1.39)) and each 19.9 p.p.b. increase in ozone (O3; 1.27 (1.00, 1.63)) in the previous hour, and each 0.22 p.p.m. increase in 48-h carbon monoxide (CO) concentrations (1.32 (1.00, 1.73]). Larger relative odds were associated with PM2.5 in May–October, and O3 and CO in November–April. Increased PM2.5, O3, and CO, but not wood smoke or BC, were associated with increased odds of STEMI, and effects may differ by season. Studies using spatially adjusted pollution estimates are needed, as well as studies further examining O3 and CO effects on the risk of STEMI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lee BL, Kim B, Lee K . Air pollution and cardiovascular disease. Toxicol Res 2014; 30: 71–75.

    Article  CAS  Google Scholar 

  2. Mustafic H, Jabre P, Caussin C, Murad MH, Escolano S, Tafflet M et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 2012; 307: 713–721.

    Article  CAS  Google Scholar 

  3. Gardner B, Ling F, Hopke PK, Frampton MW, Utell MJ, Zareba W et al. Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study. Part Fib Toxicol 2014; 11: 1.

    Article  Google Scholar 

  4. Hoppin P, Jacobs M . Wood biomass for heat & power: addressing public health impacts – summary of a 2011 symposium. Available at www.sustainableproduction.org/WoodBiomass.php.

  5. Hopke PK, Rossner A . Exposure to airborne particulate matter in the ambient, indoor, and occupational environments. Clin Occup Environ Med 2006; 5: 747–771.

    PubMed  Google Scholar 

  6. United States Environmental Protection Agency. 2014. Fine particulate designations: frequent questions. Available http://www.epa.gov/pmdesignations/faq.htm. [Accessed on 25 January 2015].

  7. Rohr AC, Wyzga RE . Attributing health effects to individual particulate matter constituents. Atmos Environ 2012; 62: 130–152.

    Article  CAS  Google Scholar 

  8. Wyzga RE, Rohr AC . Long-term particulate matter exposure: attributing health effects to individual PM components. J Air Waste Manage 2015; 65: 523–543.

    Article  CAS  Google Scholar 

  9. Lippmann M, Chen LC, Gordon T, Ito K, Thurston GD . National Particle Component Toxicity (NPACT) initiative: Integrated Epidemiologic and Toxicologic Studies of the Health Effects of Particulate Matter Components (Research Report 177). Health Effects Institute: Boston, MA. 2013.

    Google Scholar 

  10. Vedal S, Campen MJ, McDonald JD, Kaufman JD, Larson TV, Sampson PD et al. National Particle Component Toxicity (NPACT) Initiative Report on Cardiovascular Effects (Research Report 178). Health Effects Institute: Boston, MA. 2013.

    Google Scholar 

  11. Wang Y, Hopke PK, Rattigan OV, Chalupa DC, Utell MJ . Multiple-year black carbon measurements and source apportionment using delta-C in Rochester, New York. J Air Waste Manag Assoc 2012; 62: 880–887.

    Article  CAS  Google Scholar 

  12. Wang Y, Hopke PK, Xia X, Rattigan OV, Chalupa DC, Utell MJ . Source apportionment of airborne particulate matter using inorganic and organic species as tracers. Atmos Environ 2012; 55: 525–532.

    Article  CAS  Google Scholar 

  13. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ et al. Woodsmoke health effects: a review. Inhal Toxicol 2007; 19: 67–106.

    Article  CAS  Google Scholar 

  14. Barregard L, Sallsten G, Gustafson P, Andersson L, Johansson L, Basu S et al. Experimental exposure to wood-smoke particles in healthy humans: effects on markers of inflammation, coagulation, and lipid peroxidation. Inhal Toxicol 2006; 18: 845–853.

    Article  CAS  Google Scholar 

  15. Swiston JR, Davidson W, Attridge S, Li GT, Brauer M, van Eeden SF . Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur Respir J 2008; 32: 129–138.

    Article  CAS  Google Scholar 

  16. Hejl AM, Adetona O, Diaz-Sanchez D, Carter JD, Commodore AA, Rathbun SL et al. Inflammatory Effects of woodsmoke exposure among wildland firefighters working at prescribed burns at the Savannah River Site, SC. J Occup Environ Hyg 2013; 10: 173–180.

    Article  CAS  Google Scholar 

  17. Unosson J, Blomberg A, Sandstrom T, Muala A, Boman C, Nystrom R et al. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part Fib Toxicol 2013; 10: 20.

    Article  Google Scholar 

  18. Fairley D . Daily mortality and air pollution in Santa Clara County, California: 1989-1996. Environ Health Perspect 1999; 107: 637–641.

    Article  CAS  Google Scholar 

  19. Sanhueza PA, Torreblanca MA, Diaz-Robles LA, Schiappacasse LN, Silva MP, Astete TD . Particulate air pollution and health effects for cardiovascular and respiratory causes in Temuco, Chile: a wood-smoke-polluted urban area. J Air Waste Manag Assoc 2009; 59: 1481–1488.

    Article  CAS  Google Scholar 

  20. McCracken JP, Smith KR, Diaz A, Mittleman MA, Schwartz J . Chimney stove intervention to reduce long-term wood smoke exposure lowers blood pressure among Guatemalan women. Environ Health Perspect 2007; 115: 996–1001.

    Article  Google Scholar 

  21. McCracken J, Smith KR, Stone P, Diaz A, Arana B, Schwartz J . Intervention to lower household wood smoke exposure in Guatemala reduces ST-segment depression on electrocardiograms. Environ Health Perspect 2011; 119: 1562–1568.

    Article  Google Scholar 

  22. Johnston FH, Hanigan IC, Henderson SB, Morgan GG . Evaluation of interventions to reduce air pollution from biomass smoke on mortality in Launceston, Australia: retrospective analysis of daily mortality, 1994-2007. BMJ 2013; 346: e8446.

    Article  Google Scholar 

  23. O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA et al. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013; 127: e362–e425.

    Article  Google Scholar 

  24. Hansen ADA, Rosen H, Novakov T . The Aethalometer - An instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ 1984; 36: 191–196.

    Article  CAS  Google Scholar 

  25. Wang Y, Hopke PK, Rattigan OV, Xia X, Chalupa DC, Utell MJ . Characterization of residential wood combustion particles using the two-wavelength aethalometer. Environ Sci Technol 2011; 45: 7387–7393.

    Article  CAS  Google Scholar 

  26. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 1999; 33: 173–182.

    Article  CAS  Google Scholar 

  27. Simoneit BT . Biomass burning - a review of organic tracers for smoke from incomplete combustion. Appl Geochem 2002; 17: 129–162.

    Article  CAS  Google Scholar 

  28. Levy D, Lumley T, Sheppard L, Kaufman J, Checkoway H . Referent selection in case-crossover analyses of acute health effects of air pollution. Epidemiology 2001; 12: 186–192.

    Article  CAS  Google Scholar 

  29. Maclure M . The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol 1991; 133: 144–153.

    Article  CAS  Google Scholar 

  30. Levy D, Sheppard L, Checkoway H, Kaufman J, Lumley T, Koenig J et al. A case-crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac arrest. Epidemiology 2001; 12: 193–199.

    Article  CAS  Google Scholar 

  31. Sullivan J, Sheppard L, Schreuder A, Ishikawa N, Siscovick D, Kaufman J . Relation between short-term fine-particulate matter exposure and onset of myocardial infarction. Epidemiology 2005; 16: 41–48.

    Article  Google Scholar 

  32. Zanobetti A, Schwartz J . The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. Environ Health Perspect 2005; 113: 978–982.

    Article  Google Scholar 

  33. Pope CA, Muhlestein JB, May HT, Renlund DG, Anderson JL, Horne BD . Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 2006; 114: 2443–2448.

    Article  CAS  Google Scholar 

  34. Rich DQ, Kipen HM, Zhang J, Kamat L, Wilson AC, Kostis JB . Triggering of transmural infarctions, but not nontransmural infarctions, by ambient fine particles. Environ Health Perspect 2010; 118: 1229–1234.

    Article  Google Scholar 

  35. Hanigan IC, Johnston FH, Morgan GG . Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996-2005: a time-series study. Environ Health 2008; 7: 42.

    Article  Google Scholar 

  36. Delfino RJ, Brummel S, Wu J, Stern H, Ostro B, Lipsett M et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup Environ Med 2009; 66: 189–197.

    Article  CAS  Google Scholar 

  37. Henderson SB, Brauer M, MacNab YC, Kennedy SM . Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. Environ Health Perspect 2011; 119: 1266–1271.

    Article  CAS  Google Scholar 

  38. Dockery DW, Luttmann-Gibson H, Rich DQ, Link MS, Mittleman MA, Gold DR et al. Association of air pollution with increased incidence of ventricular tachyarrythmias recorded by implanted cardioverter defibrillators. Environ Health Perspect 2005; 113: 670–674.

    Article  CAS  Google Scholar 

  39. Zanobetti A, Schwartz J . Air pollution and emergency admissions in Boston, MA. J Epidemiol Commun H 2006; 60: 890–895.

    Article  Google Scholar 

  40. Zanobetti A, Gold DR, Stone PH, Suh HH, Schwartz J, Coull BA et al. Reduction in heart rate variability with traffic and air pollution in patients with coronary artery disease. Environ Health Perspect 2010; 118: 324–330.

    Article  Google Scholar 

  41. Gryparis A, Coull BA, Schwartz J, Suh HH . Semiparametric latent variable regression models for spatiotemporal modelling of mobile source particles in the greater Boston area. J R Stat Soc Ser C Appl Stat 2007; 56: 183–209.

    Article  Google Scholar 

  42. Bell ML, Dominici F, Samet JM . A meta-analysis of time-series studies of ozone and mortality with comparison to the National Morbidity, Mortality, and Air Pollution Study. Epidemiology 2005; 16: 436–445.

    Article  Google Scholar 

  43. Nuvolone D, Blazi D, Pepe P, Chini M, Scala D, Giovannini F et al. Ozone short-term exposure and acute coronary events: a multicities study in Tuscany (Italy). Environ Res 2013; 126: 17–23.

    Article  CAS  Google Scholar 

  44. Gryparis A, Forsberg B, Katsouyanni K, Analitis A, Touloumi G, Schwartz J et al. Acute effects of ozone on mortality from the “Air Pollution and Health: A European Approach” Project. Am J Respir Crit Care Med 2004; 170: 1080–1087.

    Article  Google Scholar 

  45. United States Environmental Protection Agency, 2014. Ground level ozone. Available http://www.epa.gov/groundlevelozone/ [accessed on 29 January 2015].

  46. Safieddine S, Clerbaux C, George M, Hadji-Lazaro J, Hurtmans D, Coheur PF et al. Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2. J Geophys Res Atmos. 2013; 118: 10,555–10,566.

  47. Mittleman MA, Siscovick DS . Physical exertion as a trigger of myocardial infarction and sudden cardiac death. Cardiol Clin 1996; 14: 263–270.

    Article  CAS  Google Scholar 

  48. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes M et al. Exercise and acute cardiovascular events-placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation 2007; 115: 2358–2368.

    Article  Google Scholar 

  49. von Klot S, Mittleman MA, Dockery DW, Heier M, Meisinger C, Hormann A et al. Intensity of physical exertion and triggering of myocardial infarction: a case-crossover study. Eur Heart J 2008; 29: 1881–1888.

    Article  Google Scholar 

  50. Chuang K, Chan C, Su T, Lee C, Tang C . The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J. Crit Care Med 2007; 176: 370–376.

    Article  CAS  Google Scholar 

  51. United States Environmental Protection Agency. Integrated Science Assessment for Particulate Matter Research Triangle Park, NC 2009.

  52. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 2010; 121: 2331–2378.

    Article  CAS  Google Scholar 

  53. Stewart JC, Chalupa DC, Devlin RB, Frasier LM, Huang LS, Little EL et al. Vascular effects of ultrafine particles in persons with type 2 diabetes. Environ Health Perspect 2010; 118: 1692–1698.

    Article  CAS  Google Scholar 

  54. Bind MA, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P et al. Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology 2012; 23: 332–340.

    Article  Google Scholar 

  55. Rich DQ, Kipen HM, Huang W, Wang G, Wang Y, Zhu P et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 2012; 307: 2068–2078.

    Article  CAS  Google Scholar 

  56. Rich DQ, Zareba W, Beckett W, Hopke PK, Oakes D, Frampton MW et al. Are ambient ultrafine, accumulation mode, and fine particles associated with adverse cardiac responses in patients undergoing cardiac rehabilitation? Environ Health Perspect 2012; 120: 1162–1169.

    Article  Google Scholar 

  57. Wang Y, Hopke PK, Utell MJ . Urban-scale spatial-temporal variability of black carbon and winter residential combustion particles. Aerosol Air Quality Res 2011; 5: 473–481.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from the National Heart, Lung, and Blood Institute (grant #5T32HL007937), the New York State Energy Research and Development Authority (contract #32971), and the National Institutes of Environmental Health Sciences (grant #P30 ES001247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Q Rich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, K., Hopke, P., Utell, M. et al. Triggering of ST-elevation myocardial infarction by ambient wood smoke and other particulate and gaseous pollutants. J Expo Sci Environ Epidemiol 27, 198–206 (2017). https://doi.org/10.1038/jes.2016.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2016.15

Keywords

This article is cited by

Search

Quick links