Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A general model to predict individual exposure to solar UV by using ambient irradiance data

Abstract

Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R2=0.988). Relative errors up to +20% and −10% were found in daily doses predictions, whereas an average relative error of only 2.4% (−0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lucas R . Solar Ultraviolet Radiation: Assessing the environmental burden of disease at national and local levels. WHO, World Health Organization: Geneva. 2010.

    Google Scholar 

  2. Sklar LR, Almutawa F, Lim HW, Hamzavi I . Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci 2013; 12: 54–64.

    Article  CAS  PubMed  Google Scholar 

  3. El Ghissassi F, Baan R, Straif K, Grosse Y, Secretan B, Bouvard V et al. A review of human carcinogens. Part D: radiation. Lancet Oncol 2009; 10 (8): 751–752.

    Article  PubMed  Google Scholar 

  4. Lucas RM, McMichael AJ, Armstrong BK, Smith WT . Estimating the global disease burden due to ultraviolet radiation exposure. Int J Epidemiol 2008; 37 (3): 654–667.

    Article  PubMed  Google Scholar 

  5. Armstrong BK, Kricker A . The epidemiology of UV induced skin cancer. J Photochem Photobiol B 2001; 63: 8–18.

    Article  CAS  PubMed  Google Scholar 

  6. Levi F, Te VC, Randimbison L, Erler G, La Vecchia C . Trends in skin cancer incidence in Vaud: an update, 1976-1998. Eur J Cancer Prevention 2001; 10: 371–373.

    Article  CAS  Google Scholar 

  7. Schmitt J, Seidler A, Diepgen TL, Bauer A . Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: a systematic review and meta-analysis. Br J Dermatol 2011; 164: 291–307.

    Article  CAS  PubMed  Google Scholar 

  8. Elwood JM, Jopson J . Melanoma and sun exposure: an overview of published studies. Int J Cancer 1997; 73: 198–203.

    Article  CAS  PubMed  Google Scholar 

  9. Kricker A, Armstrong BK, English DR . Does intermittent sun exposure cause basal cell carcinoma? a case-control study in Western Australia. Int J Cancer 1995; 60: 489–494.

    Article  CAS  PubMed  Google Scholar 

  10. Bauer A, Diepgen TL, Schmitt J . Is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiological literature. Br J Dermatol 2011; 165: 612–625.

    CAS  PubMed  Google Scholar 

  11. Erdmann F, Lortet-Tieulent J, Schüz J, Zeeb H, Greinert R, Breitbart EW et al. International trends in the incidence of malignant melanoma 1953–2008—are recent generations at higher or lower risk? Int J Cancer 2013; 132: 385–400.

    Article  CAS  PubMed  Google Scholar 

  12. Bulliard JL, Panizzon RG, Levi F . Epidemiology of epithelial skin cancers. Rev Med Suisse 2009; 5: 882–888.

    PubMed  Google Scholar 

  13. Hill D, White V, Marks R, Theobald T, Borland R, Roy C . Melanoma prevention: behavioral and nonbehavioral factors in sunburn among an Australian urban population. Preventive Medicine 1992; 21: 654–669.

    Article  CAS  PubMed  Google Scholar 

  14. Autier P, Boniol M, Doré J-F . Sunscreen use and increased duration of intentional sun exposure: Still a burning issue. Int J Cancer 2007; 121: 1–5.

    Article  CAS  PubMed  Google Scholar 

  15. Parisi AV, Kimlin MG, Lester R, Turnbull D . Lower body anatomical distribution of solar ultraviolet radiation on the human form in standing and sitting postures. J Photochem Photobiol B 2003; 69: 1–6.

    Article  CAS  PubMed  Google Scholar 

  16. Parisi AV, Kimlin MG, Wong JC, Fleming RA . The effects of body size and orientation on ultraviolet radiation exposure. Photodermatol Photoimmunol Photomed 1996; 12: 66–72.

    Article  CAS  PubMed  Google Scholar 

  17. Wright C, Diab R, Martincigh B . Anatomical distribution of ultraviolet solar radiation. South Afr J Sci 2004; 100: 498–500.

    Google Scholar 

  18. Rosenthal FSW, Sheila K, Munoz B, Emmett EA, Strickland PT, Taylor HR . Ocular and facial skin eeposure to ultraviolet radiation in sunlight: a personal exposure model with application to a worker population. Health Physics 1991; 61: 10.

    Article  Google Scholar 

  19. Siani AM, Casale GR, Sisto R, Colosimo A, Lang CA, Kimlin MG . Occupational Exposures to Solar Ultraviolet Radiation of Vineyard Workers in Tuscany (Italy). Photochem Photobiol 2011; 87: 925–934.

    Article  CAS  PubMed  Google Scholar 

  20. Gies P, Wright J . Measured solar ultraviolet radiation exposures of outdoor workers in Queensland in the building and construction industry. Photochem Photobiol 2003; 78: 342–348.

    Article  CAS  PubMed  Google Scholar 

  21. Milon A, Sottas PE, Bulliard JL, Vernez D . Effective exposure to solar UV in building workers: influence of local and individual factors. J Exp Sci Environ Epidemiol 2007; 17: 58–68.

    Article  Google Scholar 

  22. Siani AM, Casale GR, Diemoz H, Agnesod G, Kimlin MG, Lang CA et al. Personal UV exposure in high albedo alpine sites. Atmos Chem Phys 2008; 8: 3749–3760.

    Article  CAS  Google Scholar 

  23. Downs N, Parisi A . Measurements of the anatomical distribution of erythemal ultraviolet: a study comparing exposure distribution to the site incidence of solar keratoses, basal cell carcinoma and squamous cell carcinoma. Photochem Photobiol Sci 2009; 8: 1195–1201.

    Article  CAS  PubMed  Google Scholar 

  24. Vernez D, Milon A, Francioli L, Bulliard JL, Vuilleumier L, Moccozet L . A numeric model to simulate solar individual ultraviolet exposure. Photochem Photobiol 2011; 87: 721–728.

    Article  CAS  PubMed  Google Scholar 

  25. Ohmura A, Gilgam H, Hegmer H, Muller G, Wild M, Dutton G et al. Baseline Surface Radiation Network (BSRN): new precision radiometry for climate research. Bull Am Meteorol Soc 1998; 79: 2115–2136.

    Article  Google Scholar 

  26. Hülsen G, Gröbner J . Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance. Appl Opt 2007; 46: 5877–5886.

    Article  PubMed  Google Scholar 

  27. Erythema Reference Action Spectrum and Standard Erythema Dose. CIECommission Internationale de l’Eclairage. CIE Central Bureau: Vienna, Austria. 1998.

  28. Webb AR, Slaper H, Koepke P, Schmalwieser AW . Know Your Standard: Clarifying the CIE Erythema Action Spectrum. Photochem Photobiol 2011; 87: 483–486.

    Article  CAS  PubMed  Google Scholar 

  29. Wright C, Ncongwane G. C . K. Ambient solar UV radiation and seasonal trends in potential sunburn risk among schoolchildren in South Africa. South Afr J Child Health 2011; 5: 35–38.

    Google Scholar 

  30. Moehrle M, Korn M, Garbe C . Bacillus subtilis spore film dosimeters in personal dosimetry for occupational solar ultraviolet exposure. Int Arch Occup Environ Health 2000; 73: 575–580.

    Article  CAS  PubMed  Google Scholar 

  31. Furusawa Y, Quintern LE, Holtschmidt H, Koepke P, Saito M . Determination of erythema-effective solar radiation in Japan and Germany with a spore monolayer film optimised for the detection of UVB and UVA—results of a field campaign. Appl Microbiol Biotechnol 1998; 50: 597–603.

    Article  CAS  PubMed  Google Scholar 

  32. Casale GR, Siani AM, Diémoz H, Kimlin MG, Colosimo A . Applicability of the polysulphone horizontal calibration to differently inclined dosimeters. Photochem Photobiol 2012; 88: 207–214.

    Article  CAS  PubMed  Google Scholar 

  33. Schouten PW, Parisi AV, Turnbull DJ . Usage of the polyphenylene oxide dosimeter to measure annual solar erythemal exposures. Photochem Photobiol 2010; 86: 706–710.

    Article  CAS  PubMed  Google Scholar 

  34. Renaud A, Staehelin J, Frohlich C, Philipona R, Heimo A . Influence of snow and clouds on erythemal UV radiation : Analysis of Swiss measurements and comparison with models. American Geophysical Union: Washington, DC, ETATS-UNIS. 2000.

    Google Scholar 

  35. Philipona R, Schilling A, Schmucki D . Albedo-enhanced maximum UV irradiance—measured on surfaces oriented normal to the sun. Photochem Photobiol 2001; 73: 366–369.

    Article  CAS  PubMed  Google Scholar 

  36. Schmalwieser AW, Cabaj A, Schauberger G, Rohn H, Maier B, Maier H . Facial solar UV exposure of Austrian farmers during occupation. Photochem Photobiol 2010; 86: 1404–1413.

    Article  CAS  PubMed  Google Scholar 

  37. Bigelow DS, Slusser JR, Beaubien AF, Gibson JH . The USDA Ultraviolet Radiation Monitoring Program. Bull Am Meteorol Soc 1998; 79: 601–615.

    Article  Google Scholar 

  38. Koepke P, Backer HD, Bais A, Curylo A, Eerme K, Feister U et al. Modelling solar UV radiation in the past: comparison of algorithms and input data. In: Slusser JR, Schäfer K, Comerón A (eds). Remote Sensing of Clouds and the Atmosphere XI. SPI, Stockholm, Swedan. 2006 6362.

    Google Scholar 

  39. van Weele M, van der A R, J., v, Geffen J, Roebeling R . Space-based surface UV monitoring for Europe using SCIAMACHY and MSG. SPIE 5979, Remote Sensing of Clouds and the Atmosphere X; 2005. Bruges, Belgium: SPIE. 2005 p 59791K-K–59798KK.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES, Grant EST-2011/1/075). We thank Dr. Pascal Wild for his help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Vernez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernez, D., Milon, A., Vuilleumier, L. et al. A general model to predict individual exposure to solar UV by using ambient irradiance data. J Expo Sci Environ Epidemiol 25, 113–118 (2015). https://doi.org/10.1038/jes.2014.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2014.6

Keywords

This article is cited by

Search

Quick links