Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The impact of maternal high-fat diet consumption on neural development and behavior of offspring

Abstract

Maternal diet and metabolic state are important factors in determining the environment experienced during perinatal development. Epidemiological studies and evidence from animal models provide evidence that a mother's diet and metabolic condition are important in programming the neural circuitry that regulates behavior, resulting in a persistent impact on the offspring's behavior. Potential mechanisms by which maternal diet and metabolic profile influence the perinatal environment include placental dysfunction and increases in circulating factors such as inflammatory cytokines, nutrients (glucose and fatty acids) and hormones (insulin and leptin). Maternal obesity and high-fat diet (HFD) consumption exposure during development have been observed to increase the risk of developing serious mental health and behavioral disorders including anxiety, depression, attention deficit hyperactivity disorder and autism spectrum disorder. The increased risk of developing these behavioral disorders is postulated to be due to perturbations in the development of neural pathways that regulate behavior, including the serotonergic, dopaminergic and melanocortinergic systems. It is critical to examine the influence that a mother's nutrition and metabolic profile have on the developing offspring considering the current and alarmingly high prevalence of obesity and HFD consumption in pregnant women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krauss RM, Eckel RH . The obesity problem. New Engl J Med 1998; 338: 1156; author reply 1158.

    Article  CAS  PubMed  Google Scholar 

  2. Hossain P, Kawar B, El Nahas M . Obesity and diabetes in the developing world—a growing challenge. New Engl J Med 2007; 356: 213–215.

    Article  CAS  PubMed  Google Scholar 

  3. Haslam DW, James WP . Obesity. Lancet 2005; 366: 1197–1209.

    Article  PubMed  Google Scholar 

  4. Rofey DL, Kolko RP, Iosif AM, Silk JS, Bost JE, Feng W et al. A longitudinal study of childhood depression and anxiety in relation to weight gain. Child Psychiatry human Devel 2009; 40: 517–526.

    Article  Google Scholar 

  5. Waring ME, Lapane KL . Overweight in children and adolescents in relation to attention-deficit/hyperactivity disorder: results from a national sample. Pediatrics 2008; 122: e1–e6.

    Article  PubMed  Google Scholar 

  6. Flegal KM, Carroll MD, Kit BK, Ogden CL . Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 2012; 307: 491–497.

    Article  PubMed  Google Scholar 

  7. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA 2012; 307: 483–490.

    Article  PubMed  PubMed Central  Google Scholar 

  8. King JC . Maternal obesity, metabolism, and pregnancy outcomes. Annu Rev Nutr 2006; 26: 271–291.

    Article  CAS  PubMed  Google Scholar 

  9. Finkelstein EA, Ruhm CJ, Kosa KM . Economic causes and consequences of obesity. Annu Rev Public Health 2005; 26: 239–257.

    Article  PubMed  Google Scholar 

  10. Catenacci VA, Hill JO, Wyatt HR . The obesity epidemic. Clin Chest Med 2009; 30: 415–444, vii.

    Article  PubMed  Google Scholar 

  11. Daniels SR . The consequences of childhood overweight and obesity. Future child 2006; 16: 47–67.

    Article  PubMed  Google Scholar 

  12. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al. Neonatal leptin treatment reverses developmental programming. Endocrinology 2005; 146: 4211–4216.

    Article  CAS  PubMed  Google Scholar 

  13. Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakao K et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab 2005; 1: 371–378.

    Article  CAS  PubMed  Google Scholar 

  14. Sullivan EL, Smith MS, Grove KL . Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood. Neuroendocrinology 2011; 93: 1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan EL, Grove KL . Metabolic imprinting in obesity. Forum Nutr 2010; 63: 186–194.

    Article  CAS  PubMed  Google Scholar 

  16. Alberti-Fidanza A, Parizkova J, Fruttini D . Relationship between mothers' and newborns' nutritional and blood lipid variables. European J Clin Nutr 1995; 49: 289–298.

    CAS  Google Scholar 

  17. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD . Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 2000; 279: E83–E87.

    Article  CAS  PubMed  Google Scholar 

  18. Aimukhametova G, Ukybasova T, Hamidullina Z, Zhubanysheva K, Harun-Or-Rashid M, Yoshida Y et al. The impact of maternal obesity on mother and neonatal health: study in a tertiary hospital of Astana, Kazakhstan. Nagoya J Medi Sci 2012; 74: 83–92.

    Google Scholar 

  19. Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA . Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 2003; 111: e221–e226.

    Article  PubMed  Google Scholar 

  20. Sewell MF, Huston-Presley L, Super DM, Catalano P . Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol 2006; 195: 1100–1103.

    Article  PubMed  Google Scholar 

  21. Kunz LH, King JC . Impact of maternal nutrition and metabolism on health of the offspring. Semin Fetal Neonatal Med 2007; 12: 71–77.

    Article  PubMed  Google Scholar 

  22. Patel MS, Srinivasan M . Metabolic programming in the immediate postnatal life. Ann of Nutri Metab 2011; 58 (Suppl 2): 18–28.

    Article  CAS  Google Scholar 

  23. Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC . Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB 2006; 20: 1257–1259.

    Article  CAS  Google Scholar 

  24. Guo F, Jen KL . High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physio Behav 1995; 57: 681–686.

    Article  CAS  Google Scholar 

  25. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 2008; 51: 383–392.

    Article  CAS  PubMed  Google Scholar 

  26. Bayol SA, Farrington SJ, Stickland NC . A maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring. Br J Nutr 2007; 98: 843–851.

    Article  CAS  PubMed  Google Scholar 

  27. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 2009; 119: 323–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ray GT, Croen LA, Habel LA . Mothers of children diagnosed with attention-deficit/hyperactivity disorder: health conditions and medical care utilization in periods before and after birth of the child. Medical Care 2009; 47: 105–114.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez A, Miettunen J, Henriksen TB, Olsen J, Obel C, Taanila A et al. Maternal adiposity prior to pregnancy is associated with ADHD symptoms in offspring: evidence from three prospective pregnancy cohorts. Int Journal of Obes 2008; 32: 550–557.

    Article  CAS  Google Scholar 

  30. Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012; 129: e1121–e1128.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci 2010; 30: 3826–3830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bilbo SD, Tsang V . Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB 2010; 24: 2104–2115.

    Article  CAS  Google Scholar 

  33. Wright T, Langley-Evans SC, Voigt JP . The impact of maternal cafeteria diet on anxiety-related behaviour and exploration in the offspring. Physiol Behav 2011; 103: 164–172.

    Article  CAS  PubMed  Google Scholar 

  34. Maniam J, Morris MJ . Palatable cafeteria diet ameliorates anxiety and depression-like symptoms following an adverse early environment. Psychoneuroendocrinology 2010; 35: 717–728.

    Article  CAS  PubMed  Google Scholar 

  35. Desai RA, Manley M, Desai MM, Potenza MN . Gender differences in the association between body mass index and psychopathology. CNS Spectr 2009; 14: 372–383.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Raygada M, Cho E, Hilakivi-Clarke L . High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings' aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity. J Nutr 1998; 128: 2505–2511.

    CAS  PubMed  Google Scholar 

  37. Walker CD, Naef L, d'Asti E, Long H, Xu Z, Moreau A et al. Perinatal maternal fat intake affects metabolism and hippocampal function in the offspring: a potential role for leptin. Ann N Y Acad Sci 2008; 1144: 189–202.

    Article  PubMed  Google Scholar 

  38. Nakashima Y . Fish-oil high-fat diet intake of dams after day 5 of pregnancy and during lactation guards against excessive fat consumption of their weaning pups. J Nutr Sci Vitaminol 2008; 54: 46–53.

    Article  CAS  PubMed  Google Scholar 

  39. Naef L, Srivastava L, Gratton A, Hendrickson H, Owens SM, Walker CD . Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration. Psychopharmacology 2008; 197: 83–94.

    Article  CAS  PubMed  Google Scholar 

  40. Naef L, Moquin L, Dal Bo G, Giros B, Gratton A, Walker CD . Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience 2011; 176: 225–236.

    Article  CAS  PubMed  Google Scholar 

  41. Grayson BE, Levasseur PR, Williams SM, Smith MS, Marks DL, Grove KL . Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology 2010; 151: 1622–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leibowitz SF, Akabayashi A, Wang J, Alexander JT, Dourmashkin JT, Chang GQ . Increased caloric intake on a fat-rich diet: role of ovarian steroids and galanin in the medial preoptic and paraventricular nuclei and anterior pituitary of female rats. J Neuroendocrinol 2007; 19: 753–766.

    Article  CAS  PubMed  Google Scholar 

  43. Frias AE, Morgan TK, Evans AE, Rasanen J, Oh KY, Thornburg KL et al. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology 2011; 152: 2456–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wallace JM, Milne JS, Matsuzaki M, Aitken RP . Serial measurement of uterine blood flow from mid to late gestation in growth restricted pregnancies induced by overnourishing adolescent sheep dams. Placenta 2008; 29: 718–724.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor PD, Khan IY, Lakasing L, Dekou V, O'Brien-Coker I, Mallet AI et al. Uterine artery function in pregnant rats fed a diet supplemented with animal lard. Exp Physiol 2003; 88: 389–398.

    Article  CAS  PubMed  Google Scholar 

  46. Das UN . Is obesity an inflammatory condition? Nutrition 2001; 17: 953–966.

    Article  CAS  PubMed  Google Scholar 

  47. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM, Hauguel-de Mouzon S . Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 2008; 29: 274–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roberts KA, Riley SC, Reynolds RM, Barr S, Evans M, Statham A et al. Placental structure and inflammation in pregnancies associated with obesity. Placenta 2011; 32: 247–254.

    Article  CAS  PubMed  Google Scholar 

  49. Basu S, Haghiac M, Surace P, Challier JC, Guerre-Millo M, Singh K et al. Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation. Obesity 2011; 19: 476–482.

    Article  CAS  PubMed  Google Scholar 

  50. Lassenius MI, Pietilainen KH, Kaartinen K, Pussinen PJ, Syrjanen J, Forsblom et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 2011; 34: 1809–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F . Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274: 10689–10692.

    Article  CAS  PubMed  Google Scholar 

  52. Stewart FM, Freeman DJ, Ramsay JE, Greer IA, Caslake M, Ferrell WR . Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers. J Clin Endocrinol Metab 2007; 92: 969–975.

    Article  CAS  PubMed  Google Scholar 

  53. Park CW, Moon KC, Park JS, Jun JK, Yoon BH . The frequency and clinical significance of intra-uterine infection and inflammation in patients with placenta previa and preterm labor and intact membranes. Placenta 2009; 30: 613–618.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu MJ, Du M, Nathanielsz PW, Ford SP . Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta 2010; 31: 387–391.

    Article  CAS  PubMed  Google Scholar 

  55. Gilmore JH, Jarskog LF, Vadlamudi S . Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol 2005; 159: 106–112.

    Article  CAS  PubMed  Google Scholar 

  56. Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH . Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res 2001; 47: 27–36.

    Article  CAS  PubMed  Google Scholar 

  57. Bilbo SD, Schwarz JM . Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 2009; 3: 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bland ST, Beckley JT, Young S, Tsang V, Watkins LR, Maier SF et al. Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain. Brain Behav Immun 2010; 24: 329–338.

    Article  PubMed  Google Scholar 

  59. Rada P, Barson JR, Leibowitz SF, Hoebel BG . Opioids in the hypothalamus control dopamine and acetylcholine levels in the nucleus accumbens. Brain Res 2010; 1312: 1–9.

    Article  CAS  PubMed  Google Scholar 

  60. Barson JR, Morganstern I, Leibowitz SF . Galanin and consummatory behavior: special relationship with dietary fat, alcohol and circulating lipids. EXS 2010; 102: 87–111.

    CAS  PubMed  Google Scholar 

  61. Patterson PH . Maternal infection and immune involvement in autism. Trends in Mol Med 2011; 17: 389–394.

    Article  CAS  Google Scholar 

  62. Kneeland RE, Fatemi SH 2012 Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry.

  63. Yuan P, Zhou R, Wang Y, Li X, Li J, Chen G et al. Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia. J Affect Disord 2010; 124: 164–169.

    Article  CAS  PubMed  Google Scholar 

  64. Short SJ, Lubach GR, Karasin AI, Olsen CW, Styner M, Knickmeyer RC et al. Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey. Biol Psychiatry 2010; 67: 965–973.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chao CC, Ala TA, Hu S, Crossley KB, Sherman RE, Peterson PK et al. Serum cytokine levels in patients with Alzheimer's disease. Clin Diagn Lab Immunol 1994; 1: 433–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arranz L, Guayerbas N, De la Fuente M . Impairment of several immune functions in anxious women. J Psychosom Res 2007; 62: 1–8.

    Article  PubMed  Google Scholar 

  67. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Kenis G et al. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 1998; 10: 313–318.

    Article  CAS  PubMed  Google Scholar 

  68. Pitsavos C, Panagiotakos DB, Papageorgiou C, Tsetsekou E, Soldatos C, Stefanadis C . Anxiety in relation to inflammation and coagulation markers, among healthy adults: the ATTICA study. Atherosclerosis 2006; 185: 320–326.

    Article  CAS  PubMed  Google Scholar 

  69. Henje Blom E, Lekander M, Ingvar M, Asberg M, Mobarrez F, Serlachius E . Pro-inflammatory cytokines are elevated in adolescent females with emotional disorders not treated with SSRIs. J Affect Disord 2012; 136: 716–723.

    Article  CAS  PubMed  Google Scholar 

  70. Maes M, Bosmans E, Suy E, Vandervorst C, De Jonckheere C, Raus J . Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology 1990; 24: 115–120.

    Article  PubMed  Google Scholar 

  71. Bob P, Raboch J, Maes M, Susta M, Pavlat J, Jasova D et al. Depression, traumatic stress and interleukin-6. J Affect Disord 2010; 120: 231–234.

    Article  CAS  PubMed  Google Scholar 

  72. Goines PE, Croen LA, Braunschweig D, Yoshida CK, Grether J, Hansen R et al. Increased midgestational IFN-gamma, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol Autism 2011; 2: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J . Altered T cell responses in children with autism. Brain Behav Immun 2011; 25: 840–849.

    Article  CAS  PubMed  Google Scholar 

  74. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J . Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol 2011; 232: 196–199.

    Article  CAS  PubMed  Google Scholar 

  75. Oades RD . An exploration of the associations of pregnancy and perinatal features with cytokines and tryptophan/kynurenine metabolism in children with attention-deficit hyperactivity disorder (ADHD). Attention Deficit Hyperactivity Disord 2011; 3: 301–318.

    Article  Google Scholar 

  76. Buehler MR . A proposed mechanism for autism: an aberrant neuroimmune response manifested as a psychiatric disorder. Med Hypotheses 2011; 76: 863–870.

    Article  CAS  PubMed  Google Scholar 

  77. Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM, Tsai WY, Schaefer CA, Brown AS . Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res 2010; 121: 46–54.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Willette AA, Lubach GR, Knickmeyer RC, Short SJ, Styner M, Gilmore JH et al. Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia. Behav Brain Res 2011; 219: 108–115.

    Article  CAS  PubMed  Google Scholar 

  79. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN . The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 2006; 11: 47–55.

    Article  CAS  PubMed  Google Scholar 

  80. Osto M, Zini E, Franchini M, Wolfrum C, Guscetti F, Hafner M et al. Subacute endotoxemia induces adipose inflammation and changes in lipid and lipoprotein metabolism in cats. Endocrinology 2011; 152: 804–815.

    Article  CAS  PubMed  Google Scholar 

  81. Wearn JG, Suagee JK, Crisman MV, Corl BA, Hulver MW, Hodgson DR et al. Effects of the insulin sensitizing drug, pioglitazone, and lipopolysaccharide administration on markers of systemic inflammation and clinical parameters in horses. Veterinary Immunol and Immunopathol 2012; 145: 42–49.

    Article  CAS  Google Scholar 

  82. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP et al. Mapping early brain development in autism. Neuron 2007; 56: 399–413.

    Article  CAS  PubMed  Google Scholar 

  83. Amaral DG, Schumann CM, Nordahl CW . Neuroanatomy of autism. Trends Neurosci 2008; 31: 137–145.

    Article  CAS  PubMed  Google Scholar 

  84. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF et al. Q. Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IkappaB kinase beta/nuclear factor-kappaB-mediated inflammatory pathways in mice. Brain Behav Immun 2011; 25: 1658–1667.

    Article  CAS  PubMed  Google Scholar 

  85. Leung GM, Lam KS . Diabetic complications and their implications on health care in Asia. Hong Kong Med 2000; 6: 61–68.

    CAS  Google Scholar 

  86. Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S . Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes 2003; 52: 2951–2958.

    Article  CAS  PubMed  Google Scholar 

  87. Vambergue A, Fajardy I . Consequences of gestational and pregestational diabetes on placental function and birth weight. World J Diabetes 2011; 2: 196–203.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Leung TW, Lao TT . Placental size and large-for-gestational-age infants in women with abnormal glucose tolerance in pregnancy. Diabet Med 2000; 17: 48–52.

    Article  CAS  PubMed  Google Scholar 

  89. Oken E, Gillman MW . Fetal origins of obesity. Obes Res 2003; 11: 496–506.

    Article  PubMed  Google Scholar 

  90. Simerly RB . Hypothalamic substrates of metabolic imprinting. Physiol Behav 2008; 94: 79–89.

    Article  CAS  PubMed  Google Scholar 

  91. Jones AP, Pothos EN, Rada P, Olster DH, Hoebel BG . Maternal hormonal manipulations in rats cause obesity and increase medial hypothalamic norepinephrine release in male offspring. Brain Res. Develop Brain Res 1995; 88: 127–131.

    Article  CAS  Google Scholar 

  92. Jones AP, Dayries M . Maternal hormone manipulations and the development of obesity in rats. Physiol Behav 1990; 47: 1107–1110.

    Article  CAS  PubMed  Google Scholar 

  93. Plagemann A, Heidrich I, Gotz F, Rohde W, Dorner G . Lifelong enhanced diabetes susceptibility and obesity after temporary intrahypothalamic hyperinsulinism during brain organization. Exp Clin Endocrinol 1992; 99: 91–95.

    Article  CAS  PubMed  Google Scholar 

  94. Djiane J, Attig L . Role of leptin during perinatal metabolic programming and obesity. J Physiol Pharmacol 2008; 59 (Suppl 1): 55–63.

    PubMed  Google Scholar 

  95. Bouret SG . Development of hypothalamic neural networks controlling appetite. Forum Nutr 2010; 63: 84–93.

    Article  CAS  PubMed  Google Scholar 

  96. Kirk SL, Samuelsson AM, Argenton M, Dhonye H, Kalamatianos T, Poston L et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PloS One 2009; 4: e5870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Glavas MM, Kirigiti MA, Xiao XQ, Enriori PJ, Fisher SK, Evans AE et al. Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology 2010; 151: 1598–1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chappell LC, Seed PT, Briley A, Kelly FJ, Hunt BJ, Charnock-Jones DS et al. A longitudinal study of biochemical variables in women at risk of preeclampsia. Am J Obstetr Gynecol 2002; 187: 127–136.

    Article  Google Scholar 

  99. Hauguel-de Mouzon S, Lepercq J, Catalano P . The known and unknown of leptin in pregnancy. Am J Obstetr Gynecol 2006; 194: 1537–1545.

    Article  CAS  Google Scholar 

  100. Lepercq J, Guerre-Millo M, Andre J, Cauzac M, Hauguel-de Mouzon S . Leptin: a potential marker of placental insufficiency. Gynecol Obstet Invest 2003; 55: 151–155.

    Article  CAS  PubMed  Google Scholar 

  101. Jaquet D, Leger J, Levy-Marchal C, Oury JF, Czernichow P . Ontogeny of leptin in human fetuses and newborns: effect of intrauterine growth retardation on serum leptin concentrations. J Clin Endocrinol Metab 1998; 83: 1243–1246.

    Article  CAS  PubMed  Google Scholar 

  102. Davidowa H, Plagemann A . Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport 2000; 11: 2795–2798.

    Article  CAS  PubMed  Google Scholar 

  103. Grayson BE, Allen SE, Billes SK, Williams SM, Smith MS, Grove KL . Prenatal development of hypothalamic neuropeptide systems in the nonhuman primate. Neuroscience 2006; 143: 975–986.

    Article  CAS  PubMed  Google Scholar 

  104. Grayson BE, Kievit P, Smith MS, Grove KL . Critical determinants of hypothalamic appetitive neuropeptide development and expression: species considerations. Front Neuroendocrinol 2010; 31: 16–31.

    Article  CAS  PubMed  Google Scholar 

  105. Figlewicz DP, Higgins MS, Ng-Evans SB, Havel PJ . Leptin reverses sucrose-conditioned place preference in food-restricted rats. Physiol Behav 2001; 73: 229–234.

    Article  CAS  PubMed  Google Scholar 

  106. Figlewicz DP, Bennett J, Evans SB, Kaiyala K, Sipols AJ, Benoit SC . Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav Neurosci 2004; 118: 479–487.

    Article  CAS  PubMed  Google Scholar 

  107. Kannan S, Saadani-Makki F, Balakrishnan B, Dai H, Chakraborty PK, Janisse J et al. Decreased cortical serotonin in neonatal rabbits exposed to endotoxin in utero. J Cereb Blood Flow Metab 2011; 31: 738–749.

    Article  CAS  PubMed  Google Scholar 

  108. Daws LC, Gould GG . Ontogeny and regulation of the serotonin transporter: providing insights into human disorders. Pharmacol Ther 2011; 131: 61–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281: 1191–1193.

    Article  CAS  PubMed  Google Scholar 

  110. Ligam P, Manuelpillai U, Wallace EM, Walker D . Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta 2005; 26: 498–504.

    Article  CAS  PubMed  Google Scholar 

  111. Pfaff AW, Mousli M, Senegas A, Marcellin L, Takikawa O, Klein JP et al. Impact of foetus and mother on IFN-gamma-induced indoleamine 2,3-dioxygenase and inducible nitric oxide synthase expression in murine placenta following Toxoplasma gondii infection. Int J Parasitol 2008; 38: 249–258.

    Article  CAS  PubMed  Google Scholar 

  112. Kiyohara C, Yoshimasu K . Molecular epidemiology of major depressive disorder. Environ Health Prev Med 2009; 14: 71–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mann JJ, Malone KM, Diehl DJ, Perel J, Cooper TB, Mintun MA . Demonstration in vivo of reduced serotonin responsivity in the brain of untreated depressed patients. Am J Psychiatry 1996; 153: 174–182.

    Article  CAS  PubMed  Google Scholar 

  114. Oades RD, Lasky-Su J, Christiansen H, Faraone SV, Sonuga-Barke EJ, Banaschewski T et al. The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behav Brain Funct 2008; 4: 48.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999; 45: 287–295.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by NIDDK Grant R24 DK090964 and the ONPRC Core Grant P51 OD011092-53.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E L Sullivan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

This article was published as part of a supplement funded with an unrestricted educational contribution from Desjardins Sécurité Financière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, E., Nousen, E., Chamlou, K. et al. The impact of maternal high-fat diet consumption on neural development and behavior of offspring. Int J Obes Supp 2 (Suppl 2), S7–S13 (2012). https://doi.org/10.1038/ijosup.2012.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2012.15

Keywords

This article is cited by

Search

Quick links